Unraveling the biology of human pathogens is fundamental toward understanding mechanisms of pathogenesis and identifying genes essential for survival in the host. This application focuses on the protozoan parasite Trypanosoma brucei, which causes devastating diseases in humans and animals in sub-Saharan Africa. There are no vaccines, and therapeutic drugs have serious side effects and decreasing efficacy. T. brucei relies on a single insect vector, the tsetse fly for its transmission. At present there are few investigations on the molecular aspects of parasite biology in the tsetse vector and specifically about the signals that promote differentiation to epimastigote forms, migration to the salivary glands or the final differentiation step that results in infectious metacyclic forms. In the last five years there has been a tremendous acceleration in all fields of trypanosome biology due to the completion of the genome sequence and the wide application of RNA interference (RNAi), namely downregulation of gene expression by homologous double-stranded RNA. In addition, exquisitely sensitive, high-throughput sequencing technologies (RNAseq) have become available to analyze gene expression patterns (the transcriptome) both qualitatively and quantitatively. Since our discovery of RNAi in 1998, this pathway has been a focus of our investigations, which have led to the recent finding that RNAi functions both in the nucleus and in the cytoplasm and to the identification of five """"""""core"""""""" RNAi genes. How these RNAi factors functions and interface with one another and what is the biological scope of nuclear RNAi are some of the questions we propose to investigate. These studies have implications for reconstructing RNAi in RNAi-negative trypanosomatids and for improving applications of the RNAi tool. In addition, in collaboration with Dr. Serap Aksoy at Yale, who is an expert in tsetse biology and maintains the only tsetse colony in the Americas, we will examine the transcriptome during the T. brucei developmental cycle in the fly, with the long term goal of identifying genes essential for survival within the insect vector. We believe that the range of expertise contributed by Dr. Aksoy and our laboratory offers a unique opportunity for synergism.

Public Health Relevance

Parasitic protozoa are a major cause of global infectious diseases and thus, represent one of the most serious threats to public health. Among these are African trypanosomes, the causative agents of African trypanosomiasis or sleeping sickness in humans and a wasting and fatal disease (Nagana) in cattle, domestic pigs and other farm animals causing a profound effect on the economy of much of the continent. Unless treated, African sleeping sickness is always fatal;no vaccine has been approved and there is a very limited arsenal of drugs with generally severe shortcomings, such as high toxicity and emerging resistance.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37AI028798-23
Application #
8286278
Study Section
Pathogenic Eukaryotes Study Section (PTHE)
Program Officer
Mcgugan, Glen C
Project Start
1989-12-01
Project End
2015-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
23
Fiscal Year
2012
Total Cost
$715,160
Indirect Cost
$283,039
Name
Yale University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Shi, Huafang; Butler, Kiantra; Tschudi, Christian (2018) A single-point mutation in the RNA-binding protein 6 generates Trypanosoma brucei metacyclics that are able to progress to bloodstream forms in vitro. Mol Biochem Parasitol 224:50-56
Kolev, Nikolay G; Ramsdell, Trisha K; Tschudi, Christian (2018) Temperature shift activates bloodstream VSG expression site promoters in Trypanosoma brucei. Mol Biochem Parasitol 226:20-23
Shi, Huafang; Butler, Kiantra; Tschudi, Christian (2018) Differential expression analysis of transcriptome data of Trypanosoma brucei RBP6 induction in procyclics leading to infectious metacyclics and bloodstream forms in vitro. Data Brief 20:978-980
Damasceno, Jeziel D; Silva, Gabriel LA; Tschudi, Christian et al. (2017) Evidence for regulated expression of Telomeric Repeat-containing RNAs (TERRA) in parasitic trypanosomatids. Mem Inst Oswaldo Cruz 112:572-576
Kolev, Nikolay G; Günzl, Arthur; Tschudi, Christian (2017) Metacyclic VSG expression site promoters are recognized by the same general transcription factor that is required for RNA polymerase I transcription of bloodstream expression sites. Mol Biochem Parasitol 216:52-55
Christiano, Romain; Kolev, Nikolay G; Shi, Huafang et al. (2017) The proteome and transcriptome of the infectious metacyclic form of Trypanosoma brucei define quiescent cells primed for mammalian invasion. Mol Microbiol 106:74-92
Alves e Silva, Thiago Luiz; Savage, Amy F; Aksoy, Serap (2016) Transcript Abundance of Putative Lipid Phosphate Phosphatases During Development of Trypanosoma brucei in the Tsetse Fly. Am J Trop Med Hyg 94:890-3
Ramey-Butler, Kiantra; Ullu, Elisabetta; Kolev, Nikolay G et al. (2015) Synchronous expression of individual metacyclic variant surface glycoprotein genes in Trypanosoma brucei. Mol Biochem Parasitol 200:1-4
Kolev, Nikolay G; Ullu, Elisabetta; Tschudi, Christian (2015) Construction of Trypanosoma brucei Illumina RNA-Seq libraries enriched for transcript ends. Methods Mol Biol 1201:165-75
Ericson, Megan; Janes, Michael A; Butter, Falk et al. (2014) On the extent and role of the small proteome in the parasitic eukaryote Trypanosoma brucei. BMC Biol 12:14

Showing the most recent 10 out of 28 publications