Unraveling the biology of human pathogens is fundamental toward understanding mechanisms of pathogenesis and identifying genes essential for survival in the host. This application focuses on the protozoan parasite Trypanosoma brucei, which causes devastating diseases in humans and animals in sub-Saharan Africa. There are no vaccines, and therapeutic drugs have serious side effects and decreasing efficacy. T. brucei relies on a single insect vector, the tsetse fly for its transmission. At present there are few investigations on the molecular aspects of parasite biology in the tsetse vector and specifically about the signals that promote differentiation to epimastigote forms, migration to the salivary glands or the final differentiation step that results in infectious metacyclic forms. In the last five years there has been a tremendous acceleration in all fields of trypanosome biology due to the completion of the genome sequence and the wide application of RNA interference (RNAi), namely downregulation of gene expression by homologous double-stranded RNA. In addition, exquisitely sensitive, high-throughput sequencing technologies (RNAseq) have become available to analyze gene expression patterns (the transcriptome) both qualitatively and quantitatively. Since our discovery of RNAi in 1998, this pathway has been a focus of our investigations, which have led to the recent finding that RNAi functions both in the nucleus and in the cytoplasm and to the identification of five "core" RNAi genes. How these RNAi factors functions and interface with one another and what is the biological scope of nuclear RNAi are some of the questions we propose to investigate. These studies have implications for reconstructing RNAi in RNAi-negative trypanosomatids and for improving applications of the RNAi tool. In addition, in collaboration with Dr. Serap Aksoy at Yale, who is an expert in tsetse biology and maintains the only tsetse colony in the Americas, we will examine the transcriptome during the T. brucei developmental cycle in the fly, with the long term goal of identifying genes essential for survival within the insect vector. We believe that the range of expertise contributed by Dr. Aksoy and our laboratory offers a unique opportunity for synergism.

Public Health Relevance

Parasitic protozoa are a major cause of global infectious diseases and thus, represent one of the most serious threats to public health. Among these are African trypanosomes, the causative agents of African trypanosomiasis or sleeping sickness in humans and a wasting and fatal disease (Nagana) in cattle, domestic pigs and other farm animals causing a profound effect on the economy of much of the continent. Unless treated, African sleeping sickness is always fatal;no vaccine has been approved and there is a very limited arsenal of drugs with generally severe shortcomings, such as high toxicity and emerging resistance.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Pathogenic Eukaryotes Study Section (PTHE)
Program Officer
Mcgugan, Glen C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Internal Medicine/Medicine
Schools of Medicine
New Haven
United States
Zip Code
Ericson, Megan; Janes, Michael A; Butter, Falk et al. (2014) On the extent and role of the small proteome in the parasitic eukaryote Trypanosoma brucei. BMC Biol 12:14
Shi, Huafang; Barnes, Rebecca L; Carriero, Nicholas et al. (2014) Role of the Trypanosoma brucei HEN1 family methyltransferase in small interfering RNA modification. Eukaryot Cell 13:77-86
Kolev, Nikolay G; Ullu, Elisabetta; Tschudi, Christian (2014) The emerging role of RNA-binding proteins in the life cycle of Trypanosoma brucei. Cell Microbiol 16:482-9
Atayde, Vanessa D; Shi, Huafang; Franklin, Joseph B et al. (2013) The structure and repertoire of small interfering RNAs in Leishmania (Viannia) braziliensis reveal diversification in the trypanosomatid RNAi pathway. Mol Microbiol 87:580-93
Michaeli, Shulamit; Doniger, Tirza; Gupta, Sachin Kumar et al. (2012) RNA-seq analysis of small RNPs in Trypanosoma brucei reveals a rich repertoire of non-coding RNAs. Nucleic Acids Res 40:1282-98
Atayde, Vanessa D; Ullu, Elisabetta; Kolev, Nikolay G (2012) A single-cloning-step procedure for the generation of RNAi plasmids producing long stem-loop RNA. Mol Biochem Parasitol 184:55-8
Atayde, Vanessa D; Tschudi, Christian; Ullu, Elisabetta (2011) The emerging world of small silencing RNAs in protozoan parasites. Trends Parasitol 27:321-7
Kolev, Nikolay G; Tschudi, Christian; Ullu, Elisabetta (2011) RNA interference in protozoan parasites: achievements and challenges. Eukaryot Cell 10:1156-63
Aeby, Eric; Ullu, Elisabetta; Yepiskoposyan, Hasmik et al. (2010) tRNASec is transcribed by RNA polymerase II in Trypanosoma brucei but not in humans. Nucleic Acids Res 38:5833-43
Lye, Lon-Fye; Owens, Katherine; Shi, Huafang et al. (2010) Retention and loss of RNA interference pathways in trypanosomatid protozoans. PLoS Pathog 6:e1001161

Showing the most recent 10 out of 14 publications