This is a renewal application for grant R37 AI36082 Neutralization of primary HIV-1 viruses that was awarded in 2008. The overall goal is a detailed molecular understanding of how neutralizing antibodies, alone and together, inhibit HIV-1 infection of target cells, and how the antigens that they are directed to modulate the antibody response by interacting with dendritic cells and B cells. The work outlined in the proposal will be conducted in Dr. John Moore's laboratory at the Weill Comell Medical College We propose three Specific Aims:
Specific Aim 1 : Mechanism, stoichiometry and kinetic aspects of HIV-1 neutralization by Abs. In this Aim we will use new in vitro neutralization assays to dissect how neutralizing antibodies with different specificities block HIV-1 infection and to quantify the persistent fi-action that survives neutralization. We will use transmembrane-protein mutants to study how differential exposure of epitopes on the Env-glycoprotein complex affect the potency and extent of neutralization.
Specific Aim 2 : Synergy, cooperativity and breadth of HIV-1 neutralization. We will build on our finding of Env-glycoprotein heterogeneity as a source of synergy between neutralizing antibodies. Using new mathematical analyses, we will explore the relationship between synergy and cooperativity and how they affect potency and extent of neutralization of different primary HIV-1 inocula with varying degrees of heterogeneity.
Specific Aim 3 : Induction of immunosuppressive responses by the mannose moieties of gpl20 glycans. We will characterize how gpl20 at high concentrations that may prevail locally after immunization affect the interplay between dendritic cells and lymphocytes, including the secretion of cytokines and B-cell stimulatory factors. The pursuit of these goals will help provide in vitro correlates for which neutralizing antibodies may be most protective in vivo and inform the design of immunogens so that high titers of such antibodies can be induced.

Public Health Relevance

An effective preventive vaccine against HIV-1 infection is important to stop the global AIDS epidemic spreading further. Such a vaccine must induce antibodies that protect against infection by the virus, most probably antibodies that neutralize virus infectivity. In our research program, we will try to determine why some such antibodies are more protective than others, and why they are so difficult to induce by vaccination.

Agency
National Institute of Health (NIH)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37AI036082-22
Application #
8627529
Study Section
No Study Section (in-house review) (NSS)
Program Officer
Li, Yen
Project Start
Project End
Budget Start
Budget End
Support Year
22
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Weill Medical College of Cornell University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10065
Medina-Ramírez, Max; Sanders, Rogier W; Klasse, Per Johan (2014) Targeting B-cell germlines and focusing affinity maturation: the next hurdles in HIV-1-vaccine development? Expert Rev Vaccines 13:449-52
Guttman, Miklos; Garcia, Natalie K; Cupo, Albert et al. (2014) CD4-induced activation in a soluble HIV-1 Env trimer. Structure 22:974-84
Isik, Gözde; van Montfort, Thijs; Chung, Nancy P Y et al. (2014) Autoantibodies induced by chimeric cytokine-HIV envelope glycoprotein immunogens. J Immunol 192:4628-35
Yasmeen, Anila; Ringe, Rajesh; Derking, Ronald et al. (2014) Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits. Retrovirology 11:41
Dugast, Anne-Sophie; Stamatatos, Leonidas; Tonelli, Andrew et al. (2014) Independent evolution of Fc- and Fab-mediated HIV-1-specific antiviral antibody activity following acute infection. Eur J Immunol 44:2925-37
Garces, Fernando; Sok, Devin; Kong, Leopold et al. (2014) Structural evolution of glycan recognition by a family of potent HIV antibodies. Cell 159:69-79
Isik, Gozde; Chung, Nancy P Y; van Montfort, Thijs et al. (2013) An HIV-1 envelope glycoprotein trimer with an embedded IL-21 domain activates human B cells. PLoS One 8:e67309
Sanders, Rogier W; Derking, Ronald; Cupo, Albert et al. (2013) A next-generation cleaved, soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS Pathog 9:e1003618
Matthews, Katie; Chung, Nancy P Y; Klasse, Per Johan et al. (2013) Clinical adjuvant combinations stimulate potent B-cell responses in vitro by activating dermal dendritic cells. PLoS One 8:e63785
Ringe, Rajesh P; Sanders, Rogier W; Yasmeen, Anila et al. (2013) Cleavage strongly influences whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation. Proc Natl Acad Sci U S A 110:18256-61

Showing the most recent 10 out of 76 publications