The burden of hepatitis C virus (HCV) infection worldwide is very large, with most of the personal and economic burden yet to come, as cirrhosis and cancer take years to develop. Most infected individuals do not clear the disease, but develop chronic infections that often lead to end-stage liver disease. Current treatment is limited to co-treatment with ribavirin, interferon ? and telaprevir, a therapy that is expensive and not effective in all patients. This R37 renewal application will study important HCV RNA-protein interactions that regulate HCV gene amplification. A highly-structured RNA element is located in the viral 5' noncoding region that functions as an internal ribosome entry site (IRES) that can directly recruit 40S ribosomal subunits to the viral genome. Specifically, we will employ biochemical, NMR and single-molecule fluorescence approaches to explore the timing and control of translation on IRES-initiated mRNAs. In particular, we will study the essential role of ribosomal protein RPS25 in IRES-mediated translation. Secondly, we will study the interaction of RNA helicase RIG-I with viral and host RNA ligands. Specifically, the polymerization dynamics of RIG-I on viral RNA will be studies by atomic force spectroscopy in vitro and ultra-resolution light microcospy in infected cells. Third, the functional roles for the binding sites in the viral noncoding regions for RNA binding protein PGBP2 will be examined by mutagenesis and SHAPE analysis in infected cells. Finally, a role for 5' end-bound microRNA-122 in the protection of the viral RNA from 5' to 3' exonuclease XRN2 will be examined in infected cells. Structural, dynamic and mechanistic analysis of HCV non-coding region structures and interacting RNA binding proteins that modulate HCV gene expression will provide new antiviral targets.

Public Health Relevance

There are no effective antiviral reagents against hepatitis C virus. The 5' end of the viral genome contains an unusual internal ribosome entry site that modulates viral gene expression. Thus, studying the structure and function of this RNA element with viral and cellular proteins will point to novel antiviral intervention.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
4R37AI047365-16
Application #
8694175
Study Section
Special Emphasis Panel (NSS)
Program Officer
Koshy, Rajen
Project Start
1999-09-15
Project End
2019-12-31
Budget Start
2015-01-01
Budget End
2015-12-31
Support Year
16
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Stanford University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304
Biegel, Jason M; Henderson, Eric; Cox, Erica M et al. (2017) Cellular DEAD-box RNA helicase DDX6 modulates interaction of miR-122 with the 5' untranslated region of hepatitis C virus RNA. Virology 507:231-241
Gonzales-van Horn, Sarah R; Sarnow, Peter (2017) Making the Mark: The Role of Adenosine Modifications in the Life Cycle of RNA Viruses. Cell Host Microbe 21:661-669
Sedano, Cecilia D; Sarnow, Peter (2015) Interaction of host cell microRNAs with the HCV RNA genome during infection of liver cells. Semin Liver Dis 35:75-80
Chen, Tzu-Chun; Hsieh, Chung-Han; Sarnow, Peter (2015) Supporting Role for GTPase Rab27a in Hepatitis C Virus RNA Replication through a Novel miR-122-Mediated Effect. PLoS Pathog 11:e1005116
Sagan, Selena M; Chahal, Jasmin; Sarnow, Peter (2015) cis-Acting RNA elements in the hepatitis C virus RNA genome. Virus Res 206:90-8
Fuchs, Gabriele; Petrov, Alexey N; Marceau, Caleb D et al. (2015) Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site. Proc Natl Acad Sci U S A 112:319-25
Sedano, Cecilia D; Sarnow, Peter (2014) Hepatitis C virus subverts liver-specific miR-122 to protect the viral genome from exoribonuclease Xrn2. Cell Host Microbe 16:257-264
Sagan, Selena M; Sarnow, Peter; Wilson, Joyce A (2013) Modulation of GB virus B RNA abundance by microRNA-122: dependence on and escape from microRNA-122 restriction. J Virol 87:7338-47
Cox, Erica Machlin; Sagan, Selena M; Mortimer, Stefanie A W et al. (2013) Enhancement of hepatitis C viral RNA abundance by precursor miR-122 molecules. RNA 19:1825-32
Pager, Cara T; Schütz, Sylvia; Abraham, Teresa M et al. (2013) Modulation of hepatitis C virus RNA abundance and virus release by dispersion of processing bodies and enrichment of stress granules. Virology 435:472-84

Showing the most recent 10 out of 15 publications