The mTOR kinase is the central component of a pathway controls growth in eukaryotes and is deregulated in common human diseases like cancer and diabetes. Within cells mTOR exists within two distinct protein complexes, mTOR Complex 1 (mTORC1) and 2 (mTORC2). mTORC1 contains mTOR, mLST8/G2L, raptor, and PRAS40, is partially sensitive to rapamycin, and controls cell size through translational regulators like S6K1 and 4E-BP1. mTORC2 also contains mTOR and mLST8, but, instead of raptor and PRAS40, it contains rictor, mSin1, and protor. We know less about mTORC2 than mTORC1 but it is now accepted that mTORC2 is an activating kinase for Akt/PKB and SGK and therefore part of the PI3K pathway that controls cell survival, proliferation, and metabolism. Recently, we discovered that DEPTOR, a protein of previously unknown function, interacts directly with mTOR and inhibits mTORC1 and mTORC2 signaling in cells through unclear mechanisms. DEPTOR protein levels are highly regulated by the same growth stimuli and stresses that regulate mTORC1 and mTORC2. Overexpression of DEPTOR inhibits mTORC1 signaling, which, in turn, activates the PI3K pathway by suppressing a known inhibitory feedback from mTORC1 to PI3K. In cancers like Multiple Myeloma, DEPTOR is highly overexpressed and the resulting activation of PI3K is a new mechanism for promoting cell survival. We propose to: (1) determine how DEPTOR inhibits mTORC1 and mTORC2 signaling;(2) identify and characterize the molecular mechanisms that regulate the expression level of DEPTOR;and (3) determine the in vivo role of DEPTOR in the mTORC1 and mTORC1 pathways and in controlling liver growth and function. We will accomplish our goals with a multi-disciplinary approach that uses the tools of biochemistry, molecular biology, proteomics, high-throughput RNAi screening, and engineered mouse models. Our results are likely to have important consequences for our understanding of the clinically important mTOR pathway and the signaling mechanisms we uncover may serve in the future as targets for drug development.

Public Health Relevance

Growth is the process through which cells and organisms accumulate mass and increase in size. Over the last few years it has become clear that this basic biological process is deregulated in common human diseases like cancer and diabetes. We have recently discovered a protein called DEPTOR that our preliminary evidence indicates is an important new regulator of growth. DEPTOR is part of a network within cells called the 'mTOR pathway'that is known to be a major growth regulator. We propose to elucidate the molecular mechanisms through which DEPTOR regulates the mTOR pathway in response to growth factors like insulin, and to use engineered mouse models to understand how DEPTOR regulates organ growth in vivo. The overarching goal of our proposed work is to increase the molecular understanding of the mTOR pathway so as to enable the medical community to rationally exploit the mTOR pathway in the treatment of disease. Our work will also elucidate molecular mechanisms that are deranged in human cancers and thus may serve as targets for future drug development.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37AI047389-15
Application #
8651849
Study Section
Cellular Signaling and Regulatory Systems Study Section (CSRS)
Program Officer
Mallia, Conrad M
Project Start
2000-04-01
Project End
2015-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
15
Fiscal Year
2014
Total Cost
$482,625
Indirect Cost
$235,125
Name
Whitehead Institute for Biomedical Research
Department
Type
DUNS #
120989983
City
Cambridge
State
MA
Country
United States
Zip Code
02142
Shen, Kuang; Huang, Rick K; Brignole, Edward J et al. (2018) Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes. Nature 556:64-69
Shen, Kuang; Sabatini, David M (2018) Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc Natl Acad Sci U S A 115:9545-9550
Rohde, Jason M; Brimacombe, Kyle R; Liu, Li et al. (2018) Discovery and optimization of piperazine-1-thiourea-based human phosphoglycerate dehydrogenase inhibitors. Bioorg Med Chem 26:1727-1739
Kory, Nora; Wyant, Gregory A; Prakash, Gyan et al. (2018) SFXN1 is a mitochondrial serine transporter required for one-carbon metabolism. Science 362:
Wyant, Gregory A; Abu-Remaileh, Monther; Frenkel, Evgeni M et al. (2018) NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science 360:751-758
Abu-Remaileh, Monther; Wyant, Gregory A; Kim, Choah et al. (2017) Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 358:807-813
Shen, Kuang; Choe, Abigail; Sabatini, David M (2017) Intersubunit Crosstalk in the Rag GTPase Heterodimer Enables mTORC1 to Respond Rapidly to Amino Acid Availability. Mol Cell 68:821
Wyant, Gregory A; Abu-Remaileh, Monther; Wolfson, Rachel L et al. (2017) mTORC1 Activator SLC38A9 Is Required to Efflux Essential Amino Acids from Lysosomes and Use Protein as a Nutrient. Cell 171:642-654.e12
Cantor, Jason R; Abu-Remaileh, Monther; Kanarek, Naama et al. (2017) Physiologic Medium Rewires Cellular Metabolism and Reveals Uric Acid as an Endogenous Inhibitor of UMP Synthase. Cell 169:258-272.e17
Wolfson, Rachel L; Chantranupong, Lynne; Wyant, Gregory A et al. (2017) KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature 543:438-442

Showing the most recent 10 out of 71 publications