The long-term goal of this project is to determine the basic mechanisms by which signals generated through integrin receptors regulate chondrocyte function. The overall hypothesis driving this work is that changes in the cartilage extracellular matrix (ECM), including production of ECM protein fragments, are recognized by chondrocyte integrins and initiate a cascade of events intended to remodel the ECM but which in arthritis result in further matrix destruction (chondrocytic chondrolysis). The focus of this proposal is to determine the basic cellular mechanisms that control signals generated through the ?51 integrin which regulate production of catabolic mediators including cytokines and matrix metalloproteinases (MMPs). During the previous funding period, we have defined the signaling pathways that mediate MMP-13 production in response to fibronectin fragment (FN-f) stimulation of the ?51integrin and discovered reactive oxygen species (ROS) are necessary second messengers. Using an innovative proteomics approach we found that the MAP kinase family member JNK2 is oxidized in FN-f stimulated cells forming a Cys-SOH (sulfenic acid) intermediate. Sulfenic acid formation serves as a major mechanism by which ROS regulate cell signaling but its in chondrocyte signaling has not been investigated. In his competitive renewal, we propose to determine the mechanism by which sulfenic acid formation regulates JNK2 activity in chondrocytes. We will determine the role of JNK2 activation in OA in vivo by studying the development of surgically-induced OA in JNK2-/- mice. Finally, we will determine if HB-EGF, upregulated and released when chondrocytes are stimulated by FN-f, promotes Rac activity to activate a co-signaling pathway that augments MMP-13 expression and cartilage matrix destruction. These studies will have significant impact on the field by defining key hubs in a signaling network that mediates cartilage matrix destruction. By discovering novel mechanisms by which ROS regulate this signaling network, the information can be used to develop a unique approach to altering redox-regulated catabolic signaling networks in arthritis that targets specific protein modifications. This represents a significant advance over the general inhibition of ROS production which not proven successful in treating conditions promoted by excessive ROS, including arthritis.

Public Health Relevance

Osteoarthritis is the most common cause of chronic disability in older adults but treatments to slow the progression of the disease are lacking. The results from this project will provide new information about basic mechanisms relevant to cartilage breakdown in osteoarthritis. This information is needed in order to discover new targets and develop new therapies for slowing or stopping the progression of the disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37AR049003-17
Application #
9536689
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Lester, Gayle E
Project Start
2002-08-01
Project End
2022-07-31
Budget Start
2018-08-01
Budget End
2019-07-31
Support Year
17
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Diekman, Brian O; Collins, John A; Loeser, Richard F (2018) Does Joint Injury Make Young Joints Old? J Am Acad Orthop Surg 26:e455-e456
Collins, John A; Diekman, Brian O; Loeser, Richard F (2018) Targeting aging for disease modification in osteoarthritis. Curr Opin Rheumatol 30:101-107
Nelson, Kimberly J; Bolduc, Jesalyn A; Wu, Hanzhi et al. (2018) H2O2 oxidation of cysteine residues in c-Jun N-terminal kinase 2 (JNK2) contributes to redox regulation in human articular chondrocytes. J Biol Chem 293:16376-16389
Bolduc, Jesalyn A; Collins, John A; Loeser, Richard F (2018) Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med :
Loeser, Richard F (2017) The Role of Aging in the Development of Osteoarthritis. Trans Am Clin Climatol Assoc 128:44-54
Huang, G; Chubinskaya, S; Liao, W et al. (2017) Wnt5a induces catabolic signaling and matrix metalloproteinase production in human articular chondrocytes. Osteoarthritis Cartilage 25:1505-1515
Vanderman, K S; Loeser, R F; Chubinskaya, S et al. (2016) Reduced response of human meniscal cells to Osteogenic Protein 1 during osteoarthritis and pro-inflammatory stimulation. Osteoarthritis Cartilage 24:1036-46
Wood, Scott T; Long, David L; Reisz, Julie A et al. (2016) Cysteine-Mediated Redox Regulation of Cell Signaling in Chondrocytes Stimulated With Fibronectin Fragments. Arthritis Rheumatol 68:117-26
Long, D L; Ulici, V; Chubinskaya, S et al. (2015) Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is increased in osteoarthritis and regulates chondrocyte catabolic and anabolic activities. Osteoarthritis Cartilage 23:1523-31
Hobbs, G Aaron; Mitchell, Lauren E; Arrington, Megan E et al. (2015) Redox regulation of Rac1 by thiol oxidation. Free Radic Biol Med 79:237-50

Showing the most recent 10 out of 21 publications