The loss of synaptic connections correlates with cognitive decline in many neurodegenerative disorders, including HIV-1 associated dementia (HAD). An assay was developed to image intact postsynaptic densities (PSDs) based on detection of clusters of the scaffolding protein PSD95 fused to green fluorescent protein (PSD95-GFP). In hippocampal neurons grown in primary culture, PSD95-GFP puncta were lost following exposure to factors released by HIV-1 infected cells. PSD loss was reversible. Cannabinoids, drugs given to AIDS patients clinically and widely used illicitly, modulate synapse loss.
Three specific aims examine the effects of cannabinoids on the loss and recovery of synapses following exposure to HIV-1 proteins. 1) The hypothesis that neurotoxin-induced synapse loss is a mechanism to reduce excessive glutamatergic stimulation will be tested. These studies will delineate the signaling pathways that lead to synapse loss and cell death providing a foundation from which to study how drugs of abuse affect the balance between synaptic function and neuronal survival. 2) The hypotheses that recovery from synapse loss requires changes in NMDA receptor function and is guided by the location of pre-existing presynaptic terminals will be tested. By determining the mechanisms that initiate and direct the recovery of synapses, these studies will identify sites where cannabinoids might affect the ability of neurons to integrate back into the synaptic network. 3) The effects of acute and chronic exposure to cannabinoids on synaptic changes induced by HIV-1 proteins will be determined. The hypothesis that the mechanism by which cannabinoids modulate synapses depends on the toxic stimulus and the duration of drug treatment will be tested. These studies will provide insight into the processes that underlie cognitive decline in HAD and will enable us to determine the influence of cannabinoids on the balance between network function and cell survival. This project will provide a foundation to guide the development of drugs to improve function in HAD patients and will identify sites where drugs of abuse might interact with the formation and loss of synapses.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37DA007304-21
Application #
8215755
Study Section
Special Emphasis Panel (NSS)
Program Officer
Sorensen, Roger
Project Start
1992-03-15
Project End
2014-01-31
Budget Start
2012-02-01
Budget End
2013-01-31
Support Year
21
Fiscal Year
2012
Total Cost
$326,263
Indirect Cost
$110,195
Name
University of Minnesota Twin Cities
Department
Pharmacology
Type
Schools of Medicine
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Krogh, Kelly A; Lyddon, Elizabeth; Thayer, Stanley A (2015) HIV-1 Tat activates a RhoA signaling pathway to reduce NMDA-evoked calcium responses in hippocampal neurons via an actin-dependent mechanism. J Neurochem 132:354-66
Krogh, Kelly A; Wydeven, Nicole; Wickman, Kevin et al. (2014) HIV-1 protein Tat produces biphasic changes in NMDA-evoked increases in intracellular Ca2+ concentration via activation of Src kinase and nitric oxide signaling pathways. J Neurochem 130:642-56
Derefinko, Karen J; Peters, Jessica R; Eisenlohr-Moul, Tory A et al. (2014) Relations between trait impulsivity, behavioral impulsivity, physiological arousal, and risky sexual behavior among young men. Arch Sex Behav 43:1149-58
Feng, Xudong; Krogh, Kelly A; Wu, Cheng-Ying et al. (2014) Receptor-interacting protein 140 attenuates endoplasmic reticulum stress in neurons and protects against cell death. Nat Commun 5:4487
Shin, Angela H; Thayer, Stanley A (2013) Human immunodeficiency virus-1 protein Tat induces excitotoxic loss of presynaptic terminals in hippocampal cultures. Mol Cell Neurosci 54:22-9
Baltgalvis, Kristen A; Jaeger, Michele A; Fitzsimons, Daniel P et al. (2011) Transgenic overexpression of ýý-cytoplasmic actin protects against eccentric contraction-induced force loss in mdx mice. Skelet Muscle 1:32
Roloff, Alan M; Anderson, Garret R; Martemyanov, Kirill A et al. (2010) Homer 1a gates the induction mechanism for endocannabinoid-mediated synaptic plasticity. J Neurosci 30:3072-81
Shideman, Charles R; Reinardy, Jessica L; Thayer, Stanley A (2009) gamma-Secretase activity modulates store-operated Ca2+ entry into rat sensory neurons. Neurosci Lett 451:124-8
Zapolski, Tamika C B; Cyders, Melissa A; Smith, Gregory T (2009) Positive urgency predicts illegal drug use and risky sexual behavior. Psychol Addict Behav 23:348-54
Kim, Hee Jung; Martemyanov, Kirill A; Thayer, Stanley A (2008) Human immunodeficiency virus protein Tat induces synapse loss via a reversible process that is distinct from cell death. J Neurosci 28:12604-13

Showing the most recent 10 out of 11 publications