During the last 39 years under this grant our research has been directed toward understanding the cellular and molecular mechanisms of glornerular permeability and protein absorption as well as the derangements in these processes that occur in glomerular diseases. The experiments proposed in this application represent a direct continuation of our ongoing work on characterization of slit diaphragms and the role of GIV in podocyte function and survival after podocyte injury. We will focus on three specific aims:
Specific Aim # 1 : To characterize and determine the functions of novel, putative slit diaphragm components identified by MS and quantitative organellar proteomics in slit diaphragm fractions. We will verify their junctional localization and determine their binding partners and functions in podocytes.
Specific Aim #2 : To investigate the role of GIV in mediating Akt signaling and cell survival in passive Heymann nephritis, focal glomerulosclerosis, and diabetic nephropathy. In PAN nephrosis GIV is upregulated, assembles a VEGFR2/GIV/Gal3 complex, and functions to maintain podocyte survival. We will determine if GIV plays a similar role in other diseases associated with podocyte injury.
Specific Aim #3 : To further investigate the mechanisms and spatial-temporal aspects of GIV's effects on podocytes. Our preliminary data indicate that GIV might function at focal adhesions (FA) and/or at slit diaphragms as it colocalizes with vinculin and VEGFR2 at FA and it binds CD2AP. We will investigate the dynamics ofthe interactions between GIV and VEGFR2 and CD2AP by live cell imaging, use proximity ligation assays and superresolution IF imaging (STORM) to determine where interaction occurs, and test whether GIV depletion or expression of GIV mutants affect FA or junction formation. These studies can be expected to provide novel insights into understanding ofthe cellular and molecular mechanisms of glomerular filtration and glomerular injury and their alterations in glomerular diseases associated with proteinuria.

Public Health Relevance

Podocyte injury is the initiating cause of many glomerular diseases. The studies planned will provide key insights into the signaling neworks that regulate podocyte organization, functions and survival in response to glomerular injury in diseases associated with proteinuria.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
4R37DK017724-41
Application #
8792268
Study Section
Special Emphasis Panel (NSS)
Program Officer
Ketchum, Christian J
Project Start
2014-06-05
Project End
2017-05-31
Budget Start
2014-06-05
Budget End
2015-05-31
Support Year
41
Fiscal Year
2014
Total Cost
$524,018
Indirect Cost
$177,071
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Shah, Mehul; Baterina Jr, Oscar Y; Taupin, Vanessa et al. (2013) ARH directs megalin to the endocytic recycling compartment to regulate its proteolysis and gene expression. J Cell Biol 202:113-27
Fukasawa, Hirotaka; Obayashi, Hiroaki; Schmieder, Sandra et al. (2011) Phosphorylation of podocalyxin (Ser415) Prevents RhoA and ezrin activation and disrupts its interaction with the actin cytoskeleton. Am J Pathol 179:2254-65
Fukasawa, Hirotaka; Bornheimer, Scott; Kudlicka, Krystyna et al. (2009) Slit diaphragms contain tight junction proteins. J Am Soc Nephrol 20:1491-503
Lehtonen, Sanna; Shah, Mehul; Nielsen, Rikke et al. (2008) The endocytic adaptor protein ARH associates with motor and centrosomal proteins and is involved in centrosome assembly and cytokinesis. Mol Biol Cell 19:2949-61
Green, Ryan S; Stone, Erica L; Tenno, Mari et al. (2007) Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis. Immunity 27:308-20
Lehtonen, Sanna; Lehtonen, Eero; Kudlicka, Krystyna et al. (2004) Nephrin forms a complex with adherens junction proteins and CASK in podocytes and in Madin-Darby canine kidney cells expressing nephrin. Am J Pathol 165:923-36