The goal of this application is to elucidate the molecular basis for invasion and intoxication of intestinal cells by cholera toxin (CT), the causative agent of Asiatic cholera, and for induction of innate immunity. Mucosal surfaces represent vast areas where host tissues are separated from the environment only by a delicate but highly effective single layer of columnar epithelial cells, joined by tight junctions that are impermeable to proteins and even small peptides. Here, we study how a bacterial protein breeches this barrier to enter the endoplasmic reticulum (ER), and then cytosol, of host intestinal cells. To do this, the toxin co-opts a sphingolipid receptor (ganglioside GM1) and endogenous mechanisms of membrane and lipid trafficking for entry into the ER. Once in the ER, a fragment of CT, the A1-chain, then enters the cytosol by hijacking the machinery essential for protein quality control in the biosynthetic pathway, which senses and eventually degrades (by retro-translocation to the cytosol) all terminally-misfolded proteins in the ER lumen. We recently found that the intestinal cell senses entry of the A1-chain into the ER to induce an innate immune response, even when the toxin is rendered enzymatically inert, suggesting a general mechanism of innate immunity. Signal transduction in this pathway appears to be mediated by canonical sensors of ER stress, which are associated with the pathogenesis of IBD. The biology co-opted by CT to enter host cells is fundamental to intestinal cell structure and function, and clinically relevant for diverse human diseases in addition to the toxigenic diarrheas. This project proposes to continue 22 years of focused research. We will use biochemical, molecular, cell biological, and genetic approaches to: explain how GM1 sphingolipids and CT-GM1 complexes traffic to the ER and other destinations (Aim 1);analyze the processing of the toxin by the ER, and elucidate the mechanisms for transport to the cytosol, and for its induction of an innate immune response (Aim 2);and identify novel molecular components involved in all the toxin pathways using unbiased forward and reverse genetic approaches (Aim 3). We have established novel reagents and approaches to solve these problems, including: synthesis of GM1 structural isoforms for direct structure-function studies on sphingolipid trafficking;and preparation of novel CT mutants designed to isolate the fraction of toxin within the ER lumen or to trap it in intermediate reactions to understand how the ER processes the toxin for transport to the cytosol and for induction of innate immunity. We have also developed the zebrafish for genetic studies and identified 13 families by forward screen as resistant to intoxication. The mutant genes in these families will be identified by positional-mapping and their function studied.

Public Health Relevance

The goal of this application is to understand how a bacterial protein can breech the intestinal barrier to cause diarrheal disease and to induce an innate immune response. The pathway models how some normal gut microbes might interact with the host in both health and disease. The topic is also relevant to mucosal delivery of drugs, vaccines, and immunomodulators for disease treatment.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Gastrointestinal Mucosal Pathobiology Study Section (GMPB)
Program Officer
Hamilton, Frank A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Children's Hospital Boston
United States
Zip Code
Raghunathan, Krishnan; Wong, Tiffany H; Chinnapen, Daniel J et al. (2016) Glycolipid Crosslinking Is Required for Cholera Toxin to Partition Into and Stabilize Ordered Domains. Biophys J 111:2547-2550
Day, Charles A; Baetz, Nicholas W; Copeland, Courtney A et al. (2015) Microtubule motors power plasma membrane tubulation in clathrin-independent endocytosis. Traffic 16:572-90
Lencer, Wayne I; DeLuca, Heidi; Grey, Michael J et al. (2015) Innate immunity at mucosal surfaces: the IRE1-RIDD-RIG-I pathway. Trends Immunol 36:401-9
Rath, Timo; Baker, Kristi; Dumont, Jennifer A et al. (2015) Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Crit Rev Biotechnol 35:235-54
Cho, Jin A; Zhang, Xuan; Miller, Gregory M et al. (2014) 4-Phenylbutyrate attenuates the ER stress response and cyclic AMP accumulation in DYT1 dystonia cell models. PLoS One 9:e110086
Luo, Rong; Jeong, Sung-Jin; Yang, Annie et al. (2014) Mechanism for adhesion G protein-coupled receptor GPR56-mediated RhoA activation induced by collagen III stimulation. PLoS One 9:e100043
te Welscher, Yvonne M; Chinnapen, Daniel J-F; Kaoutzani, Lydia et al. (2014) Unsaturated glycoceramides as molecular carriers for mucosal drug delivery of GLP-1. J Control Release 175:72-8
Zhou, Xiaohui; Massol, Ramiro H; Nakamura, Fumihiko et al. (2014) Remodeling of the intestinal brush border underlies adhesion and virulence of an enteric pathogen. MBio 5:
Saslowsky, David E; te Welscher, Yvonne M; Chinnapen, Daniel J-F et al. (2013) Ganglioside GM1-mediated transcytosis of cholera toxin bypasses the retrograde pathway and depends on the structure of the ceramide domain. J Biol Chem 288:25804-9
Rath, Timo; Kuo, Timothy T; Baker, Kristi et al. (2013) The immunologic functions of the neonatal Fc receptor for IgG. J Clin Immunol 33 Suppl 1:S9-17

Showing the most recent 10 out of 19 publications