Mucosal organs such as the intestine are highly vascular organs with extensive metabolic demands. Epithelial cells which line the intestine function to orchestrate a multitude of mucosal responses, and given their anatomic location, are primary targets for diminished blood flow and resultant tissue hypoxia. Our previous studies have explored the response of intestinal epithelial cells to hypoxia and these studies defined a transcriptional signaling pathway mediated by hypoxia-inducible factor (HIF). Activation of HIF results in the coordinated induction of a cluster of apically-localized, barrier protective gene products. Such induction parallels the accumulation of polymorphonuclear leukocytes (PMN, neutrophils). In this proposal, we will test the hypothesis that HIF coordinates protective epithelial responses to hypoxia.
Three specific aims are proposed to test this hypothesis. First, we will elucidate the role of PMN to "inflammatory hypoxia" using in vitro and in vivo models of intestinal inflammation. Second, we will build on recent findings to further explore the role of HIF signaling to intestinal inflammation. In particular, we will define the contribution of HIF-1 and HIF-2 to protection afforded by inflammatory hypoxia. Third, we will extend our recent findings with pharmacological approaches that activate HIF (prolyl-hydroxylase inhibitors) to define specific targets and mechanisms of protection in both chemically- and genetically-induced murine models of intestinal inflammation. The overall aim of this proposal is to elucidate the how hypoxia and inflammation coordinately influence disease outcomes at the mucosal interface.

Public Health Relevance

These studies are proposed to better understand basic mechanisms of inflammation in the intestine. Specifically, these studies will define how metabolic shifts present during episodes of inflammation might be harnessed to develop novel therapies for mucosal diseases. It is our hope that extensions of this work in human patients might impact inflammatory disease outcomes.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-DKUS-C (03))
Program Officer
Carrington, Jill L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Campbell, Eric L; Bruyninckx, Walter J; Kelly, Caleb J et al. (2014) Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40:66-77
Weissmuller, Thomas; Glover, Louise E; Fennimore, Blair et al. (2014) HIF-dependent regulation of AKAP12 (gravin) in the control of human vascular endothelial function. FASEB J 28:256-64
Keely, S; Campbell, E L; Baird, A W et al. (2014) Contribution of epithelial innate immunity to systemic protection afforded by prolyl hydroxylase inhibition in murine colitis. Mucosal Immunol 7:114-23
Kominsky, Douglas J; Campbell, Eric L; Ehrentraut, Stefan F et al. (2014) IFN-?-mediated induction of an apical IL-10 receptor on polarized intestinal epithelia. J Immunol 192:1267-76
Eckle, Tobias; Kewley, Emily M; Brodsky, Kelley S et al. (2014) Identification of hypoxia-inducible factor HIF-1A as transcriptional regulator of the A2B adenosine receptor during acute lung injury. J Immunol 192:1249-56
Eltzschig, Holger K; Bratton, Donna L; Colgan, Sean P (2014) Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat Rev Drug Discov 13:852-69
Colgan, Sean P; Fennimore, Blair; Ehrentraut, Stefan F (2013) Adenosine and gastrointestinal inflammation. J Mol Med (Berl) 91:157-64
Kelly, C J; Glover, L E; Campbell, E L et al. (2013) Fundamental role for HIF-1* in constitutive expression of human * defensin-1. Mucosal Immunol 6:1110-8
Colgan, Sean P; Curtis, Valerie F; Campbell, Eric L (2013) The inflammatory tissue microenvironment in IBD. Inflamm Bowel Dis 19:2238-44
Ehrentraut, Stefan F; Kominsky, Douglas J; Glover, Louise E et al. (2013) Central role for endothelial human deneddylase-1/SENP8 in fine-tuning the vascular inflammatory response. J Immunol 190:392-400

Showing the most recent 10 out of 15 publications