Obesity and Type 2 diabetes represent global health threats that predispose millions of individuals to reduced life expectancy and incur $117 billion in annual health care costs in the U.S. alone. Leptin acts via the long isoform of the leptin receptor (LepRb) to regulate energy balance, metabolism, and neuroendocrine function. It is crucial to understand the molecular basis of LepRb action in order to understand the mechanisms governing metabolic regulation. The long-term goals of our previous and proposed studies under this award, entitled, Molecular Mechanisms of Leptin Receptor/Jak2 Action, are to understand mechanisms of LepRb signaling and how these signals regulate neural function to control energy balance, glucose homeostasis, and endocrine function. Our findings have revealed two LepRb signals important for metabolic regulation: Tyr1138nSTAT3 and a second LepRb metabolic signaling pathway independent of LepRb tyrosine phosphorylation (the pY-independent pathway). To understand how LepRb controls metabolism and energy balance, we must determine how LepRb mediates the pY-independent second metabolic signal and understand how STATS and this pY-independent second signal modulate neuronal physiology to mediate downstream leptin action. Importantly, understanding how LepRb signals control physiology necessitates defining their long-term effects (as well as their acute actions). Our goals during this second period of MERIT funding are to resolve these issues. Since cultured cells do not permit the analysis of neural and physiologic leptin action, we will continue to generate and utilize LepRb mutant knock-in mouse lines, complemented by mouse models in which LepRb signaling molecules are disrupted in a cell- specific manner, with which to study the roles and mechanisms of action for defined LepRb signals in vivo. We propose to;
Specific Aim 1 : Identify the pY-independent LepRb moiety responsible for metabolic signaling in vivo.
Specific Aim 2 : Define the cell-autonomous roles for LepRb signals in the control of neuronal gene expression.
Specific Aim 3 : Determine the acute and chronic mechanisms by which LepRb signals modulate neural activity in vivo.

Public Health Relevance

Obesity and Type 2 diabetes represent global health threats that predispose millions of individuals to reduced life expectancy and incur $117 billion in annual health care costs in the U.S. alone. These studies will delineate the roles for specific LepRb signals in the regulation of neural and organismal physiology to define pathways that may be dysregulated in metabolic disease and that may represent potential targets for therapeutic intervention.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37DK056731-17
Application #
8837608
Study Section
Special Emphasis Panel (NSS)
Program Officer
Hyde, James F
Project Start
1999-03-15
Project End
2016-05-31
Budget Start
2015-06-01
Budget End
2016-05-31
Support Year
17
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Allison, Margaret B; Pan, Warren; MacKenzie, Alexander et al. (2018) Defining the Transcriptional Targets of Leptin Reveals a Role for Atf3 in Leptin Action. Diabetes 67:1093-1104
Kim, Geun Hyang; Shi, Guojun; Somlo, Diane Rm et al. (2018) Hypothalamic ER-associated degradation regulates POMC maturation, feeding, and age-associated obesity. J Clin Invest 128:1125-1140
Rupp, Alan C; Allison, Margaret B; Jones, Justin C et al. (2018) Specific subpopulations of hypothalamic leptin receptor-expressing neurons mediate the effects of early developmental leptin receptor deletion on energy balance. Mol Metab :
Pan, Warren; Adams, Jessica M; Allison, Margaret B et al. (2018) Essential Role for Hypothalamic Calcitonin Receptor?Expressing Neurons in the Control of Food Intake by Leptin. Endocrinology 159:1860-1872
Burke, Luke K; Ogunnowo-Bada, Emmanuel; Georgescu, Teodora et al. (2017) Lorcaserin improves glycemic control via a melanocortin neurocircuit. Mol Metab 6:1092-1102
Thiagarajan, Praveena S; Zheng, Qiao; Bhagrath, Manvir et al. (2017) STAT3 activation by leptin receptor is essential for TNBC stem cell maintenance. Endocr Relat Cancer 24:415-426
Zhang, Hongyu; Nair, Viji; Saha, Jharna et al. (2017) Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice. Kidney Int 92:909-921
Cady, Gillian; Landeryou, Taylor; Garratt, Michael et al. (2017) Hypothalamic growth hormone receptor (GHR) controls hepatic glucose production in nutrient-sensing leptin receptor (LepRb) expressing neurons. Mol Metab 6:393-405
Sutton, Amy K; Myers Jr, Martin G; Olson, David P (2016) The Role of PVH Circuits in Leptin Action and Energy Balance. Annu Rev Physiol 78:207-21
Burke, Luke K; Doslikova, Barbora; D'Agostino, Giuseppe et al. (2016) Sex difference in physical activity, energy expenditure and obesity driven by a subpopulation of hypothalamic POMC neurons. Mol Metab 5:245-52

Showing the most recent 10 out of 48 publications