Sensing environmental cues is critical for bacteria to survive under different environmental conditions. ThisMERIT extension application proposes continued analyses ofsignal transduction components that are used bybacteria to sense alterations of oxygen tension and light intensity. One crytical oxygen and light regulatedmetaboUc pathway that we study is the tetrapyrrole biosynthetic pathway that synthesizes important endproducts heme, vitamin 312 and chlorophyll. We are actively studying how oxygen and light responding signaltransduction components control synthesis ofthese tetrapyrroles with a long-term goal ofunderstanding howcells coordinate their synthesis.Our laboratory studies several oxygen and light responding receptors that are present in a wide variety ofbacteria including several important pathogens where they are Implicated in controlling virulence. This proposaluses a combination of genetics, biochemistry and structural biology methodologies to obtain detailedunderstandings of underlying molecular mechanisms used to sense changes in oxygen tension and lightintensity. We also study how this information is transmitted to transcription factors that regulate tetrapyrrolegene expression in response to oxygen and light. During the past funding period, the Pi's laboratory successfullytransitioned Into the field of structural biology resulting in published crystal structures ofseveral lightresponding transcription factors that we study. These structural approaches are providing the first detailedunderstanding of how blue Ught absorption drives alteration in gene expression in bacteria. We are takingsimilar approaches to obtain a detailed molecular understanding of how a change in oxygen tension is sensedand how this information is used to alter cellular physiology.

Public Health Relevance

This study provides molecular details of how bacteria sense changes in oxygen tension and light intensitythat can affect the behaviour, survival and pathogenicity of a broad number of bacterial species.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
4R37GM040941-23
Application #
7997312
Study Section
Special Emphasis Panel (NSS)
Program Officer
Hagan, Ann A
Project Start
1989-12-01
Project End
2016-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
23
Fiscal Year
2011
Total Cost
$546,868
Indirect Cost
Name
Indiana University Bloomington
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
006046700
City
Bloomington
State
IN
Country
United States
Zip Code
47401
Cheng, Zhuo; Yamamoto, Haruki; Bauer, Carl E (2016) Cobalamin's (Vitamin B12) Surprising Function as a Photoreceptor. Trends Biochem Sci 41:647-50
Vermeulen, Arjan J; Bauer, Carl E (2015) Members of the PpaA/AerR Antirepressor Family Bind Cobalamin. J Bacteriol 197:2694-703
Kumka, Joseph E; Bauer, Carl E (2015) Analysis of the FnrL regulon in Rhodobacter capsulatus reveals limited regulon overlap with orthologues from Rhodobacter sphaeroides and Escherichia coli. BMC Genomics 16:895
Shimizu, Takayuki; Cheng, Zhuo; Matsuura, Katsumi et al. (2015) Evidence that Altered Cis Element Spacing Affects PpsR Mediated Redox Control of Photosynthesis Gene Expression in Rubrivivax gelatinosus. PLoS One 10:e0128446
Cheng, Zhuo; Li, Keran; Hammad, Loubna A et al. (2014) Vitamin B12 regulates photosystem gene expression via the CrtJ antirepressor AerR in Rhodobacter capsulatus. Mol Microbiol 91:649-64
Wu, Jiang; Cheng, Zhuo; Reddie, Khalilah et al. (2013) RegB kinase activity is repressed by oxidative formation of cysteine sulfenic acid. J Biol Chem 288:4755-62
Yin, Liang; Bauer, Carl E (2013) Controlling the delicate balance of tetrapyrrole biosynthesis. Philos Trans R Soc Lond B Biol Sci 368:20120262
Zappa, Sébastien; Bauer, Carl E (2013) The LysR-type transcription factor HbrL is a global regulator of iron homeostasis and porphyrin synthesis in Rhodobacter capsulatus. Mol Microbiol 90:1277-92
Zappa, Sébastien; Bauer, Carl E (2013) Iron homeostasis in the Rhodobacter genus. Adv Bot Res 66:
Yin, Liang; Dragnea, Vladimira; Feldman, George et al. (2013) Redox and light control the heme-sensing activity of AppA. MBio 4:e00563-13

Showing the most recent 10 out of 21 publications