Copper plays a key role in numerous environmentally and biologically important processes, particularly when encapsulated within enzymes that are widely distributed in Nature. The copper ions in the active sites of enzymes perform a variety of significant functions, including the binding and activation of dioxygen (O2) for effecting metabolically significant chemical reactions and the reduction of oxidized nitrogen-containing compounds like nitrite and nitrous oxide (N2O) during microbial respiratory processes important within the global nitrogen cycle. Despite extensive research, many questions remain unanswered concerning the detailed molecular level pathways of these processes. The research described herein addresses some of these questions through the synthetic modeling approach. In this approach, low molecular weight complexes designed to replicate aspects of copper enzyme active site structure and function are characterized and their reactivity studied. The goals are to develop detailed understanding of geometries, electronic structures, bonding, and reaction mechanisms relevant to the biological systems. In particular, the research aims to provide detailed understanding of the fundamental chemistry underlying the function of an important subset of copper-containing enzymes involved in the binding and activation of O2 and N2O. This objective will be addressed through three specific aims: (1) Dioxygen Activation at Monocopper Sites, (2) Dioxygen Activation at Multicopper Sites, and (3) Copper-Sulfur Chemistry for Modeling the CuZ Site of Nitrous Oxide Reductase.
In aims (1) and (2), synthetic analogs of highly reactive mono- and multicopper oxidizing species will be prepared in order to evaluate their possible role in enzymes that bind and activate O2.
In aim (3), new multicopper(I)-sulfide models of the unusual tetracopper-sulfide cluster (CuZ) found in an environmentally important enzyme, nitrous oxide reductase, will be synthesized and their reactivity with N2O will be studied. In addition to aspiring to a deep understanding of copper enzyme structure/function relationships, the proposed work is aimed at developing novel copper chemistry of fundamental significance.

Public Health Relevance

The research aims to provide detailed understanding of the fundamental chemistry underlying the function of an important subset of copper-containing enzymes involved in the binding and activation of O2 and N2O. The dioxygen-activating enzymes are involved in a plethora of important biological processes central to life, including respiration, metal ion homeostasis (the disruption of which causes disease), and the production of important organic metabolites, hormones, and neurotransmitters essential to human health. The reduction of N2O by the microbial enzyme nitrous oxide reductase converts this greenhouse gas to inert N2 in a process recognized to be a critical component of the global nitrogen cycle and thus directly relevant to public health.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Macromolecular Structure and Function A Study Section (MSFA)
Program Officer
Anderson, Vernon
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Minnesota Twin Cities
Schools of Arts and Sciences
United States
Zip Code
Dhar, Debanjan; Yee, Gereon M; Spaeth, Andrew D et al. (2016) Perturbing the Copper(III)-Hydroxide Unit through Ligand Structural Variation. J Am Chem Soc 138:356-68
Eisenhart, Reed J; Rudd, P Alex; Planas, Nora et al. (2015) Pushing the Limits of Delta Bonding in Metal-Chromium Complexes with Redox Changes and Metal Swapping. Inorg Chem 54:7579-92
Gagnon, Nicole; Tolman, William B (2015) [CuO](+) and [CuOH](2+) complexes: intermediates in oxidation catalysis? Acc Chem Res 48:2126-31
Neisen, Benjamin D; Solntsev, Pavlo; Halvagar, Mohammad R et al. (2015) Secondary Sphere Hydrogen Bonding in Monocopper Complexes of Potentially Dinucleating Bis(carboxamide) Ligands. Eur J Inorg Chem 2015:5856-5863
Dhar, Debanjan; Tolman, William B (2015) Hydrogen atom abstraction from hydrocarbons by a copper(III)-hydroxide complex. J Am Chem Soc 137:1322-9
Yee, Gereon M; Tolman, William B (2015) Transition metal complexes and the activation of dioxygen. Met Ions Life Sci 15:131-204
Boyce, David W; Salmon, Debra J; Tolman, William B (2014) Linkage isomerism in transition-metal complexes of mixed (arylcarboxamido)(arylimino)pyridine ligands. Inorg Chem 53:5788-96
Halvagar, Mohammad Reza; Solntsev, Pavlo V; Lim, Hyeongtaek et al. (2014) Hydroxo-bridged dicopper(II,III) and -(III,III) complexes: models for putative intermediates in oxidation catalysis. J Am Chem Soc 136:7269-72
Tehranchi, Jacqui; Donoghue, Patrick J; Cramer, Christopher J et al. (2013) Reactivity of (Dicarboxamide)M(II)-OH (M = Cu, Ni) Complexes: Reaction with Acetonitrile to Yield M(II)-Cyanomethides. Eur J Inorg Chem 2013:
Halvagar, Mohammad Reza; Tolman, William B (2013) Isolation of a 2-hydroxytetrahydrofuran complex from copper-promoted hydroxylation of THF. Inorg Chem 52:8306-8

Showing the most recent 10 out of 34 publications