Thiol-based redox regulation has emerged as the prevalent mechanism for redox regulation of cellular processes. Its major component, the thioredoxin (Trx) system, is present in all organisms. Thioredoxin reductases (TRs) control the redox state of Trxs, which in turn regulate cellular processes by controlling the redox state of Trxs. TRs and Trxs have been implicated in cancer development, apoptosis, signal transduction and many other processes, but the pathways and mechanisms of thiol-based regulation are poorly understood. Mammals have three TRs: cytosolic TR1 (Txnrd1), mitochondrial TR3 (Txnrd2) and thioredoxin/glutathione reductase TGR (Txnrd3). All three contain a catalytic selenocysteine in the C-terminal region and, therefore, the mammalian Trx system is dependent on dietary selenium. In addition, each TR has several isoforms that differ by their N-terminal sequences. Among TR substrates, previous studies focused on Trx1 and few other thiol oxidoreductases (i.e., proteins that use catalytic redox Cys). However, there are numerous other Trx-like proteins and thiol oxidoreductases, and the overall composition of this system and identity of proteins regulated by thiol oxidoreductases is not known. This is important because thiol oxidoreductases provide a framework for redox regulation of cellular processes by targeting redox Cys residues in proteins. Previously, we defined the basic properties of TRs and their roles in various biological processes, organs and organisms. Additional data revealed successful application of mechanism-based approaches to identify substrates of TRs and thiol oxidoreductases. Computational approaches were also developed that allow identification of entire sets of thiol oxidoreductases in organisms. We now propose to use this foundation to characterize isoforms of TRs, their thiol oxidoreductase substrates and protein targets of thiol oxidoreductases to define the major pathway of thiol-based redox regulation in mammals. To address this challenge, we propose the following specific aims: (1) Characterize regulation of TR function and redox homeostasis by heterodimerization and position-specific Sec insertion. (2) Determine specific substrates of mammalian TR isoforms. (3) Define a mammalian set of thiol oxidoreductases and their protein targets. A combination of computational, proteomic, cell biology, and animal model approaches will be used to address these questions, and the data will be used to define the network of thiol-based redox regulation of protein function in mammals.

Public Health Relevance

A redox system composed of thioredoxin reductase and thioredoxin is the main regulator of the redox state of cysteines in proteins, whereby controlling cellular redox homeostasis and major metabolic processes. This system has been implicated in cell signaling, apoptosis, cancer development, and many other physiological and pathophysiological processes. Using computational, proteomic, cell biology, and animal model approaches, we propose to determine functions of thioredoxin reductase isoforms, their thiol oxidoreductase substrates and identities of downstream targets to define a skeleton of thiol-based redox regulation in mammals.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37GM065204-13
Application #
8583326
Study Section
Special Emphasis Panel (ZRG1-EMNR-H (02))
Program Officer
Barski, Oleg
Project Start
2002-05-01
Project End
2015-11-30
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
13
Fiscal Year
2014
Total Cost
$349,316
Indirect Cost
$142,314
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Podolskiy, Dmitriy I; Gladyshev, Vadim N (2016) Intrinsic Versus Extrinsic Cancer Risk Factors and Aging. Trends Mol Med 22:833-834
Mariotti, Marco; Lobanov, Alexei V; Manta, Bruno et al. (2016) Lokiarchaeota Marks the Transition between the Archaeal and Eukaryotic Selenocysteine Encoding Systems. Mol Biol Evol 33:2441-53
Carlson, Bradley A; Tobe, Ryuta; Yefremova, Elena et al. (2016) Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol 9:22-31
Gerashchenko, Maxim V; Gladyshev, Vadim N (2016) Ribonuclease selection for ribosome profiling. Nucleic Acids Res :
Tobe, Ryuta; Carlson, Bradley A; Huh, Jang Hoe et al. (2016) Selenophosphate synthetase 1 is an essential protein with roles in regulation of redox homoeostasis in mammals. Biochem J 473:2141-54
Kaya, Alaattin; Lobanov, Alexei V; Gladyshev, Vadim N (2015) Evidence that mutation accumulation does not cause aging in Saccharomyces cerevisiae. Aging Cell 14:366-71
Kaya, Alaattin; Gerashchenko, Maxim V; Seim, Inge et al. (2015) Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins. Proc Natl Acad Sci U S A 112:10685-90
Tobe, Ryuta; Carlson, Bradley A; Tsuji, Petra A et al. (2015) Differences in Redox Regulatory Systems in Human Lung and Liver Tumors Suggest Different Avenues for Therapy. Cancers (Basel) 7:2262-76
Kim, Moon-Jung; Lee, Byung Cheon; Hwang, Kwang Yeon et al. (2015) Selenium utilization in thioredoxin and catalytic advantage provided by selenocysteine. Biochem Biophys Res Commun 461:648-52
Tarrago, Lionel; Péterfi, Zalán; Lee, Byung Cheon et al. (2015) Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors. Nat Chem Biol 11:332-8

Showing the most recent 10 out of 54 publications