The eicosanoid family of lipid mediators modulates a number of inflammatory processes including ainway inflammation related to asthma. The eicosanoids are biosynthesized from arachidonic acid, which is liberated from the cellular phospholipids by a family of enzymes called phospholipase A2, The mammalian genome encodes 10 secreted phospholipases A2 (sPLA2s), and the role of these enzymes in mediating arachidonic acid release is under active investigation. Cells also contain a cytosolic PLA2 (cPI_A2alpha) that works in a coordinated rnanner with sPLA2s to maximize arachidonic acid release. Recently, we have expressed all of the mouse and human sPLA2s as recombinant proteins and have studied their enzymatic properties in vitro. Mammals also contin an sPI_A2 receptor, the M-type sPLA2 receptor, which was discovered by use of venom sPLA2s. We have shown that many of the mammalian sPLA2s are high affinity ligands for this receptor. The focus of our future studies is to explore the role of high specific activity sPl-A2s in the liberation of arachidonic acid leading to eicosanoids. We will study the molecular basis for the coordinated action of sPLA2s with CPLA2alpha. We will also develop and use tight binding sPLA2 inhibitors to probe the role of these enzymes in arachidonic acid release. We have generated mice that are deficient in human group X spLA2 and have shown that airway inflammation is maredly reduced in a mouse model of allergic asthma in this mouse. We will continue to study the role of group X sPI_A2 in promoting airway inflammation related to asthma. We are also generating mice that are deficient in the other high specific activity sPLA2s and also the M-type sPLA2 receptor. We will also test the possibility that the M-type sPLA2 receptor functions to clear sPLA2s from the extracellular fluid once they have been secreted from cells.

Public Health Relevance

Our work on generation of eicosanoids is important for understanding several diseases that are intensified by eicosanoids. The two most important diseases impaced by our work are asthma and arthritis. Our work may lead to better therapeutics for the treatment of these widespread inflammatory diseases.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Special Emphasis Panel (NSS)
Program Officer
Noel, Patricia
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
Schools of Arts and Sciences
United States
Zip Code
Lai, Ying; Altemeier, William A; Vandree, John et al. (2014) Increased density of intraepithelial mast cells in patients with exercise-induced bronchoconstriction regulated through epithelially derived thymic stromal lymphopoietin and IL-33. J Allergy Clin Immunol 133:1448-55
Kelvin, Alyson A; Degousee, Norbert; Banner, David et al. (2014) Lack of group X secreted phospholipase A? increases survival following pandemic H1N1 influenza infection. Virology 454-455:78-92
Sato, Hiroyasu; Taketomi, Yoshitaka; Ushida, Ayako et al. (2014) The adipocyte-inducible secreted phospholipases PLA2G5 and PLA2G2E play distinct roles in obesity. Cell Metab 20:119-32
Ilic, Dusko; Bollinger, James M; Gelb, Michael et al. (2014) sPLA2 and the epidermal barrier. Biochim Biophys Acta 1841:416-21
Hallstrand, Teal S; Lai, Ying; Altemeier, William A et al. (2013) Regulation and function of epithelial secreted phospholipase A2 group X in asthma. Am J Respir Crit Care Med 188:42-50
Henderson Jr, William R; Ye, Xin; Lai, Ying et al. (2013) Key role of group v secreted phospholipase A2 in Th2 cytokine and dendritic cell-driven airway hyperresponsiveness and remodeling. PLoS One 8:e56172
Degousee, Norbert; Kelvin, David J; Geisslinger, Gerd et al. (2011) Group V phospholipase A2 in bone marrow-derived myeloid cells and bronchial epithelial cells promotes bacterial clearance after Escherichia coli pneumonia. J Biol Chem 286:35650-62
Henderson Jr, William R; Oslund, Rob C; Bollinger, James G et al. (2011) Blockade of human group X secreted phospholipase A2 (GX-sPLA2)-induced airway inflammation and hyperresponsiveness in a mouse asthma model by a selective GX-sPLA2 inhibitor. J Biol Chem 286:28049-55
Mouchlis, Varnavas D; Magrioti, Victoria; Barbayianni, Efrosini et al. (2011) Inhibition of secreted phospholipases A? by 2-oxoamides based on ?-amino acids: Synthesis, in vitro evaluation and molecular docking calculations. Bioorg Med Chem 19:735-43
Jemel, Ikram; Ii, Hiromi; Oslund, Rob C et al. (2011) Group X secreted phospholipase A2 proenzyme is matured by a furin-like proprotein convertase and releases arachidonic acid inside of human HEK293 cells. J Biol Chem 286:36509-21

Showing the most recent 10 out of 25 publications