32-adrenergic receptors ((32ARs) relax airway smooth muscle causing bronchodilation. p-agonists are commonly used drugs in asthma, but the response is erratic due to regulation from genetic variation, chronic treatment, other asthma therapies, and asthmatic inflammation. This MERIT extension will continue studies with the overall goal of understanding the basis of P2AR regulation in asthma.
In Aim 1 interactions of P2AR polymorphisms, cell-type, and modulating conditions on receptor phenotype will be ascertained, with whole- gene transfections of the (32AR representing the major human haplotypes into airway cells under various clinically relevant conditions. Studies will be carried out to define haplotype-expression relationships and their mechanisms. This will lead to a comprehensive understanding of their biology, and the fundamental basis for pharmacogenomic approaches to asthma therapy. The mechanisms of P2AR desensitization /resensitization relative to airway function in asthma remain obscure.
In Aim 2 the roles of GRK-mediated phosphorylation of P2AR on airways, particularly agonist-promoted desensitization (clinically manifested as tachyphylaxis), and adapter-protein trafficking with """"""""signal remodeling"""""""" (related to adverse airway effects of chronic treatment), will be determined. Transgenic mice will be generated with targeted expression to airway smooth muscle of the human P2AR and multiple mutated (32AR lacking phosphorylation sites for the 5 GRK isoforms. Signaling is studied in airway smooth muscle cells and correlated with airway physiology studies of contraction/relaxation under various conditions.
In Aim 3 the roles of PKA- and PKC-mediated P2AR phosphorylation on airway function will be determined, examining homologous and heterologous desensitization and receptor crosstalk, processes potentially relevant to signal dampening and dysregulated smooth muscle function. Transgenic mice will be generated with targeted expression to airway smooth muscle of mutated p2AR lacking the phosphorylation sites for PKA or PKC, and studied as in Aim 2. While we know that p-agonists, corticosteroids, and asthmatic inflammation alter airway receptors, G-proteins, or sffectors (R:G:E), the rate limiting elements are unclear, and thus mechanisms of regulation, and the nterface(s) to intervene to enhance therapy, are not known.
In Aim 4, this R:G:E stoechiometry will be ascertained by genetic manipulation of the mouse genome to increase and decrease these elements in relevant bronchodilatory and contraction circuits. Signaling at the cellular level will be correlated with function to bridge the gap between these events and relevant airway physiology. Asthma remains a serious disease affecting ~15 million in the US. Treatment with p-agonists is a mainstay of therapy, but with a better fundamental understanding of the mechanisms of receptor function and regulation, outcome can be mproved, adverse effects minimized, and new therapeutic targets defined.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
No Study Section (in-house review) (NSS)
Program Officer
Banks-Schlegel, Susan P
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Maryland Baltimore
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Kim, Donghwa; Pauer, Susan H; Yong, Hwan M et al. (2016) β2-Adrenergic Receptors Chaperone Trapped Bitter Taste Receptor 14 to the Cell Surface as a Heterodimer and Exert Unidirectional Desensitization of Taste Receptor Function. J Biol Chem 291:17616-28
Wang, Wayne C H; Pauer, Susan H; Smith, Dan'elle C et al. (2014) Targeted transgenesis identifies Gαs as the bottleneck in β2-adrenergic receptor cell signaling and physiological function in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 307:L775-80
Liggett, Stephen B (2014) Bitter taste receptors in the wrong place: novel airway smooth muscle targets for treating asthma. Trans Am Clin Climatol Assoc 125:64-74; discussion 74-5
Robinett, Kathryn S; Koziol-White, Cynthia J; Akoluk, Arda et al. (2014) Bitter taste receptor function in asthmatic and nonasthmatic human airway smooth muscle cells. Am J Respir Cell Mol Biol 50:678-83
Liggett, Stephen B (2013) Bitter taste receptors on airway smooth muscle as targets for novel bronchodilators. Expert Opin Ther Targets 17:721-31
An, Steven S; Wang, Wayne C H; Koziol-White, Cynthia J et al. (2012) TAS2R activation promotes airway smooth muscle relaxation despite β(2)-adrenergic receptor tachyphylaxis. Am J Physiol Lung Cell Mol Physiol 303:L304-11
Robinett, Kathryn S; Deshpande, Deepak A; Malone, Molly M et al. (2011) Agonist-promoted homologous desensitization of human airway smooth muscle bitter taste receptors. Am J Respir Cell Mol Biol 45:1069-74
Wang, Wayne C H; Juan, Aster H; Panebra, Alfredo et al. (2011) MicroRNA let-7 establishes expression of beta2-adrenergic receptors and dynamically down-regulates agonist-promoted down-regulation. Proc Natl Acad Sci U S A 108:6246-51
Nagele, Peter; Liggett, Stephen B (2011) Genetic variation, β-blockers, and perioperative myocardial infarction. Anesthesiology 115:1316-27
Belvisi, Maria G; Dale, Nicole; Birrell, Mark A et al. (2011) Bronchodilator activity of bitter tastants in human tissue. Nat Med 17:776

Showing the most recent 10 out of 61 publications