Description The long-term goal of our research is to understand how molecular interactions between lipoproteins and cell surface receptors affect lipid metabolism and disease susceptibility. Knowledge of the metabolic roles of apolipoprotein (apo) E and low-density lipoprotein receptor (LDLR) family members will be combined with available structural information in the design of an experimental strategy to dissect determinants of a productive binding interaction. A novel strategy, termed expressed protein ligation, will be employed to introduce stable isotopes into a specific, predetermined, region of apoE that is essential for LDLR binding. The research to be pursued includes three specific aims. 1) Segmental isotope labeled apoE3-N-temrinal domain, in complex with lipid, will be analyzed by multidimensional heteronuclear NMR spectroscopy in experiments designed to distinguish between alternate structural models of the lipid-bound apoE. 2) The contact sites between apoE and the LDLR will be characterized. It is hypothesized that analysis of segmental isotope labeled apoE3-NT7DMPC in complex with a functional LDLR mini-receptor will yield molecular details of their binding interaction. 3) The interaction of apoE with LDL receptor related protein 6 (LRP6) will be studied. The hypothesis that LDL-A repeats located near the transmembrane spanning sequence of LRP6 are involved in apoE ligand binding will be evaluated. In addition, the postulate that a mutation in LRP6 (R611C), associated with coronary artery disease in human subjects, causes a defect in pH dependent apoE ligand release will be tested. The results of these experiments will extend knowledge of the LDLR family, apoE-mediated lipoprotein metabolism and regulation of plasma lipid homeostasis. Based on the fact that aberrations in the LDLR pathway are positively correlated to onset of cardiovascular disease and apoE manifests isoform-specific susceptibility to neurodegenerative diseases, we anticipate that new knowledge gained from these studies will provide insight into molecular mechanisms that regulate key metabolic processes in health and disease.

Public Health Relevance

Apolipoprotein (apo) E is an important modulator of whole body lipid homeostasis. Biological functions of apoE are manifest through interactions with a family of cell surface receptors. Proposed research will characterize the receptor-active structure of apoE as well as its binding interaction with two members of the low-density lipoprotein receptor family. Results obtained will improve understanding of how apoE regulates lipid metabolism and its association with disease susceptibility.

National Institute of Health (NIH)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Liu, Lijuan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Children's Hospital & Res Ctr at Oakland
United States
Zip Code
Su, Betty; Ryan, Robert O (2014) Metabolic biology of 3-methylglutaconic acid-uria: a new perspective. J Inherit Metab Dis 37:359-68
Ghosh, Mistuni; Ren, Gang; Simonsen, Jens B et al. (2014) Cationic lipid nanodisks as an siRNA delivery vehicle. Biochem Cell Biol 92:200-5
Ghosh, Mistuni; Ryan, Robert O (2014) Curcumin homing to the nucleolus: mechanism for initiation of an apoptotic program. J Nutr Biochem 25:1117-23
Sharma, Vineeta; Witkowski, Andrzej; Witkowska, H Ewa et al. (2014) Aberrant hetero-disulfide bond formation by the hypertriglyceridemia-associated p.Gly185Cys APOA5 variant (rs2075291). Arterioscler Thromb Vasc Biol 34:2254-60
Sharma, Vineeta; Forte, Trudy M; Ryan, Robert O (2013) Influence of apolipoprotein A-V on the metabolic fate of triacylglycerol. Curr Opin Lipidol 24:153-9
Sharma, Vineeta; Beckstead, Jennifer A; Simonsen, Jens B et al. (2013) Gene transfer of apolipoprotein A-V improves the hypertriglyceridemic phenotype of apoa5 (-/-) mice. Arterioscler Thromb Vasc Biol 33:474-80
Yamamoto, Taichi; Lu, Christine; Ryan, Robert O (2011) A two-step binding model of PCSK9 interaction with the low density lipoprotein receptor. J Biol Chem 286:5464-70
Hauser, Paul S; Narayanaswami, Vasanthy; Ryan, Robert O (2011) Apolipoprotein E: from lipid transport to neurobiology. Prog Lipid Res 50:62-74
Ghosh, Mistuni; Singh, Amareshwar T K; Xu, Wenwei et al. (2011) Curcumin nanodisks: formulation and characterization. Nanomedicine 7:162-7
Singh, Amareshwar T K; Ghosh, Mistuni; Forte, Trudy M et al. (2011) Curcumin nanodisk-induced apoptosis in mantle cell lymphoma. Leuk Lymphoma 52:1537-43