There are two general types of telencephalic GABAergic neurons: projection neurons of the basal ganglia and local circuit neurons of cortical structures. Most GABAergic neurons in the adult brain are inhibitory;their dysfunction leads to severe disorders including epilepsy, and abnormalities in their functions are implicated in a range of neuropsychiatric disorders including schizophrenia and autism. Inroads to understanding the genetic control of GABAergic neuron development and function have begun. In the forebrain, the DIxl, 2, 5 & 6 homeobox genes have a central role in this process. We have shown that pairs of these transcription factor-encoding genes are required for regulating early steps in GABAergic neuronal differentiation, whereas individual Dlx genes are required for later steps in differentiation and neural function. Herein, I describe experiments aimed at elucidating some of the molecular mechanisms through which the Dlx genes regulate development and function of telencephalic GABAergic neurons. The experiments include;four approaches to identify Dlx transcriptional target genes;identifying and characterizing enhancer elements that drive expression in specific cells types in the developing subpallium and its derivatives;characterizing the function of selected Dlx regulated genes (e.g.GucylaS, Zfhxib and cMaf);definiting interneuron phenotypes of conditional DIxl, Dlx2, Dlx1/Dlx2 and Dlx5 mutants;and characterizing autism mutant alleles of Dlx2, Lhx6 and other regulators of interneurons using an MGE-transpIant assay.

Public Health Relevance

Telencephalic GABAergic neurons regulate cognition and emotion;their dysfunction is implicated in cognitive disorders (schizophrenia and possibly autism), emotional disorders (anxiety and depression) and epilepsy. Therefore, these studies on the genetic regulation of telencephalic GABAergic neurons provide an important foundation for understanding human gene studies of neuropsychiatric disorders.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Special Emphasis Panel (NSS)
Program Officer
Panchision, David M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Schools of Medicine
San Francisco
United States
Zip Code
Zhao, Yangu; Flandin, Pierre; Vogt, Daniel et al. (2014) Ldb1 is essential for development of Nkx2.1 lineage derived GABAergic and cholinergic neurons in the telencephalon. Dev Biol 385:94-106
Lee, Anthony T; Gee, Steven M; Vogt, Daniel et al. (2014) Pyramidal neurons in prefrontal cortex receive subtype-specific forms of excitation and inhibition. Neuron 81:61-8
Lee, Anthony T; Vogt, Daniel; Rubenstein, John L et al. (2014) A class of GABAergic neurons in the prefrontal cortex sends long-range projections to the nucleus accumbens and elicits acute avoidance behavior. J Neurosci 34:11519-25
Southwell, Derek G; Nicholas, Cory R; Basbaum, Allan I et al. (2014) Interneurons from embryonic development to cell-based therapy. Science 344:1240622
Thompson, Carol L; Ng, Lydia; Menon, Vilas et al. (2014) A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain. Neuron 83:309-23
Vogt, Daniel; Hunt, Robert F; Mandal, Shyamali et al. (2014) Lhx6 directly regulates Arx and CXCR7 to determine cortical interneuron fate and laminar position. Neuron 82:350-64
Silbereis, John C; Nobuta, Hiroko; Tsai, Hui-Hsin et al. (2014) Olig1 function is required to repress dlx1/2 and interneuron production in Mammalian brain. Neuron 81:574-87
Stanco, Amelia; Pla, Ramón; Vogt, Daniel et al. (2014) NPAS1 represses the generation of specific subtypes of cortical interneurons. Neuron 84:940-53
Pattabiraman, Kartik; Golonzhka, Olga; Lindtner, Susan et al. (2014) Transcriptional regulation of enhancers active in protodomains of the developing cerebral cortex. Neuron 82:989-1003
Visel, Axel; Taher, Leila; Girgis, Hani et al. (2013) A high-resolution enhancer atlas of the developing telencephalon. Cell 152:895-908

Showing the most recent 10 out of 28 publications