The long-term goal of these studies is to understand how the basic functional organization of the mammalian cerebral cortex - the cortical area map - arises in development. We are testing a model in which the area map is set up by discrete signaling centers. One such center is the cortical hem, generating Wingless-lnt (WNT) and Bone Morphogenetic Protein (BMP) proteins. Our primary hypothesis is that the cortical hem regulates development of the area map along the medial/lateral (M/L) axis. In addition, preliminary findings indicate new roles for the hem via its generation of a rich variety of cell types, transient and permanent, neuronal and non-neuronal.
In Aim 1, we will fate map the hem using the WNT3a locus to direct Cre expression to the hem. The resulting mouse line will be crossed with reporter mice, carrying marker genes flanked by IoxP sites, in the offspring, WNT3a-expressing hem cells and their progeny will be permanently marked. Hem-derived cells will be definitively characterized with markers of cell division, cell type, cell death and connectivity. Their development and striking migratory behavior will be followed in fixed tissue and living slices;cues that direct their migration will be explored.
In Aim 2, we will ablate the cortical hem utilizing the WNT3a locus and Cre-lox recombination to direct expression of a cellular toxin to the hem. Cortices in which the hem is entirely or partially ablated, or in which hem cells are ablated mosaically (""""""""hem hypomorphs"""""""") will be analyzed at embryonic and postnatal ages. Gene expression patterns, neurochemistry, cytoarchitecture and functional connectivity will be used to identify shifts or loss of M/L patterning in the cortex. With similar techniques, we will determine the effects of the loss of hem-derived cells. A possibility is defective cortical lamination, which could indicate that the hem directs cortical patterning along two axes.
Aim 3 will focus more specifically on the contributions of WNT and BMP signaling from the hem. Using classic mouse genetic approaches, we will evaluate the effects of different, lower levels of BMP signaling on M/L cortical patterning. Next, we will attempt to rescue particular defects that result from hem loss by replacing WNT and BMP signals, utilizing in utero electroporation-mediated gene transfer. Together these studies should clarify normal development of the cerebral cortex, and shed light on the possible causes of human cortical malformations.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37MH059962-15
Application #
8437266
Study Section
Special Emphasis Panel (NSS)
Program Officer
Panchision, David M
Project Start
1999-06-01
Project End
2014-02-28
Budget Start
2013-03-08
Budget End
2014-02-28
Support Year
15
Fiscal Year
2013
Total Cost
$365,547
Indirect Cost
$127,947
Name
University of Chicago
Department
Biology
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Caronia-Brown, Giuliana; Yoshida, Michio; Gulden, Forrest et al. (2014) The cortical hem regulates the size and patterning of neocortex. Development 141:2855-65
Deck, Marie; Lokmane, Ludmilla; Chauvet, Sophie et al. (2013) Pathfinding of corticothalamic axons relies on a rendezvous with thalamic projections. Neuron 77:472-84
Pani, Ariel M; Mullarkey, Erin E; Aronowicz, Jochanan et al. (2012) Ancient deuterostome origins of vertebrate brain signalling centres. Nature 483:289-94
Grove, Elizabeth A (2011) Wnt signaling meets internal dissent. Genes Dev 25:1759-62
Caronia-Brown, Giuliana; Grove, Elizabeth A (2011) Timing of cortical interneuron migration is influenced by the cortical hem. Cereb Cortex 21:748-55
Louvi, Angeliki; Grove, Elizabeth A (2011) Cilia in the CNS: the quiet organelle claims center stage. Neuron 69:1046-60
Caronia, Giuliana; Wilcoxon, Jennifer; Feldman, Polina et al. (2010) Bone morphogenetic protein signaling in the developing telencephalon controls formation of the hippocampal dentate gyrus and modifies fear-related behavior. J Neurosci 30:6291-301
Yoshida, Michio; Assimacopoulos, Stavroula; Jones, Kevin R et al. (2006) Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order. Development 133:537-45
Rash, Brian G; Grove, Elizabeth A (2006) Area and layer patterning in the developing cerebral cortex. Curr Opin Neurobiol 16:25-34
Lu, Meiling; Grove, Elizabeth A; Miller, Richard J (2002) Abnormal development of the hippocampal dentate gyrus in mice lacking the CXCR4 chemokine receptor. Proc Natl Acad Sci U S A 99:7090-5

Showing the most recent 10 out of 11 publications