Acetylcholine (ACh) is a major neurotransmitter in the central and peripheral nervous system. The rate-limiting step in ACh synthesis is believed to be the presynaptic acquisition of the precursor choline, achieved by the high- affinity, Na+-dependent, hemicholinium-3 (HC-3)-sensitive choline transporter (CHT). Recent breakthroughs in the molecular elucidation of invertebrate and mammalian CHT genes, the development of CHT-specific antibodies, and the creation of tractable in vitro and transgenic model systems have established new opportunities to define neuronal CHT subcellular distribution, mechanisms of activity- and receptor-dependent CHT regulation, and the functional consequences of genetic manipulation of CHT. Recently, we have established that CHT is )redominantly vesicular in localization, both in vivo as well as in in vitro model systems. CHT appears to reside )n a subpopulation of cholinergic synaptic vesicles that express the vesicular ACh transporter (VAChT) and which store ACh. Preliminary studies document both a change in the localization of CHT in synaptic membranes in response to depolarization in wildtype mice and a posttranslational mechanism to achieve normal levels of choline transport and HC-3 binding despite a 50% reduction in CHT protein in CHT +/- mice. In this new application, we apply biochemical, imaging and functional methodologies using in vitro and in vivo model systems to investigate the nature of the vesicular pool harboring CHT and clarify the physical requirements for vesicular targeting and synaptic CHT trafficking. Secondly, we explore plasma membrane shuttling as a major route for activity, cell signaling and behaviorally induced changes in choline uptake and implement a yeast 2-hybrid screen for novel CHT interactors. Finally, we analyze the consequences of full and partial genetic CHT ablation in the mouse for cholinergic biochemistry, pharmacology, physiology and behavior. These studies will elucidate novel aspects of CHT regulation, clarify how CHT supports cholinergic synaptic/behavioral plasticity and provide new CHT links to brain disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37MH073159-10
Application #
8461991
Study Section
Special Emphasis Panel (NSS)
Program Officer
Nadler, Laurie S
Project Start
2004-06-01
Project End
2014-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
10
Fiscal Year
2013
Total Cost
$370,656
Indirect Cost
$133,056
Name
Vanderbilt University Medical Center
Department
Neurosciences
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Rudnick, Gary; Kramer, Reinhard; Blakely, Randy D et al. (2014) The SLC6 transporters: perspectives on structure, functions, regulation, and models for transporter dysfunction. Pflugers Arch 466:25-42
Dong, Yu; Dani, John A; Blakely, Randy D (2013) Choline transporter hemizygosity results in diminished basal extracellular dopamine levels in nucleus accumbens and blunts dopamine elevations following cocaine or nicotine. Biochem Pharmacol 86:1084-8
Parikh, Vinay; St Peters, Megan; Blakely, Randy D et al. (2013) The presynaptic choline transporter imposes limits on sustained cortical acetylcholine release and attention. J Neurosci 33:2326-37
English, Brett A; Appalsamy, Martin; Diedrich, Andre et al. (2010) Tachycardia, reduced vagal capacity, and age-dependent ventricular dysfunction arising from diminished expression of the presynaptic choline transporter. Am J Physiol Heart Circ Physiol 299:H799-810
Lund, D; Ruggiero, A M; Ferguson, S M et al. (2010) Motor neuron-specific overexpression of the presynaptic choline transporter: impact on motor endurance and evoked muscle activity. Neuroscience 171:1041-53
Holmstrand, Ericka C; Asafu-Adjei, Josephine; Sampson, Allan R et al. (2010) Ultrastructural localization of high-affinity choline transporter in the rat anteroventral thalamus and ventral tegmental area: differences in axon morphology and transporter distribution. J Comp Neurol 518:1908-24
Hoard, J L; Hoover, D B; Mabe, A M et al. (2008) Cholinergic neurons of mouse intrinsic cardiac ganglia contain noradrenergic enzymes, norepinephrine transporters, and the neurotrophin receptors tropomyosin-related kinase A and p75. Neuroscience 156:129-42
Zhao, Jiali; Matthies, Dawn S; Botzolakis, Emmanuel J et al. (2008) Hereditary spastic paraplegia-associated mutations in the NIPA1 gene and its Caenorhabditis elegans homolog trigger neural degeneration in vitro and in vivo through a gain-of-function mechanism. J Neurosci 28:13938-51
Misawa, Hidemi; Fujigaya, Hirofumi; Nishimura, Takashi et al. (2008) Aberrant trafficking of the high-affinity choline transporter in AP-3-deficient mice. Eur J Neurosci 27:3109-17
McDonald, Paul W; Hardie, Shannon L; Jessen, Tammy N et al. (2007) Vigorous motor activity in Caenorhabditis elegans requires efficient clearance of dopamine mediated by synaptic localization of the dopamine transporter DAT-1. J Neurosci 27:14216-27

Showing the most recent 10 out of 16 publications