This project focuses on molecular properties, regulation, and functional roles of ion channels in T lymphocytes. Using patch-clamp techniques, we have characterized a diverse set of functionally significant Ca2+, K+, and CI" ion channels in human and mouse T cells. These channels are differentially expressed depending on the developmental and activation state and have been shown to contribute to T-cell receptor signaling leading to gene expression, secretion of lymphokines, and cell proliferation. Ion channels in the immune system offer promising targets for development of therapeutic agents for immunomodulation, based upon specific channel blockade. Using single cell patch-clamp and [Ca2+]j imaging techniques, together with molecular and biochemical approaches, this grant renewal application will focus on the two types of Ca2+ channel found in T lymphocytes. Ca2+ release-activated Ca2+ (CRAG) channels are opened upon depletion of intracellular Ca2+ stores and are crucial for sustained [Ca2+]i signaling that leads to gene expression in T cells. We recently discovered Stim and STIM1 as essential and conserved components of CRAG channel function in Drosophila and human cells.
In Specific Aim 1, we will use RNAi to screen for additional components of the CRAG channel, define the mechanism of STIM1 in CRAG channel activation, and investigate the role of STIM1 in functional T cell responses. It is now clear that the native MIC current in T cells represents tetramers of TRPM7, a protein with functional channel and kinase domains. MIC channel expression is up-regulated during the activation of T cells to proliferate.
In Specific Aim 2 we will identify the molecular basis for MIC channel gating, define mechanisms for ion permeation and block, and determine the functional role of MIC channels in T cell activation. Through the proposed experiments in this renewal application, we seek a clearer understanding how CRAG and MIC channels function as ion channels and how they regulate Ca2+ influx in T cells and corresponding cell functions that underlie the immune response.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Neurotransporters, Receptors, and Calcium Signaling Study Section (NTRC)
Program Officer
Stewart, Randall R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Irvine
Schools of Medicine
United States
Zip Code
Amcheslavsky, Anna; Safrina, Olga; Cahalan, Michael D (2014) State-dependent block of Orai3 TM1 and TM3 cysteine mutants: insights into 2-APB activation. J Gen Physiol 143:621-31
Amcheslavsky, Anna; Safrina, Olga; Cahalan, Michael D (2013) Orai3 TM3 point mutation G158C alters kinetics of 2-APB-induced gating by disulfide bridge formation with TM2 C101. J Gen Physiol 142:405-12
Newton, Ryan H; Leverrier, Sabrina; Srikanth, Sonal et al. (2011) Protein kinase D orchestrates the activation of DRAK2 in response to TCR-induced Ca2+ influx and mitochondrial reactive oxygen generation. J Immunol 186:940-50
Demuro, Angelo; Penna, Aubin; Safrina, Olga et al. (2011) Subunit stoichiometry of human Orai1 and Orai3 channels in closed and open states. Proc Natl Acad Sci U S A 108:17832-7
Zhang, Shenyuan L; Yeromin, Andriy V; Hu, Junjie et al. (2011) Mutations in Orai1 transmembrane segment 1 cause STIM1-independent activation of Orai1 channels at glycine 98 and channel closure at arginine 91. Proc Natl Acad Sci U S A 108:17838-43
Krummel, Matthew F; Cahalan, Michael D (2010) The immunological synapse: a dynamic platform for local signaling. J Clin Immunol 30:364-72
Cahalan, Michael D (2009) STIMulating store-operated Ca(2+) entry. Nat Cell Biol 11:669-77
Yu, Ying; Keller, Steve H; Remillard, Carmelle V et al. (2009) A functional single-nucleotide polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension. Circulation 119:2313-22
Cahalan, Michael D; Chandy, K George (2009) The functional network of ion channels in T lymphocytes. Immunol Rev 231:59-87
Penna, Aubin; Demuro, Angelo; Yeromin, Andriy V et al. (2008) The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature 456:116-20

Showing the most recent 10 out of 86 publications