The overall question to be addressed by this proposal is which immune protein mediators produced during peripheral inflammation contributes to the generation of inflammatory pain by altering ion channel function in nociceptors. To achieve this objective three aims are proposed.
In Aim 1 we will first phenotype two models of peripheral inflammation in the adult mouse;a pathogen-based model (intraplantar complete Freund's adjuvant) and a model of sterile tissue injury (surgical incision of the plantar surface of the paw) by examining the temporal pattern of recruitment of different specific immune cells in the two models, to be detected by flow cytometry and Q-RT-PCR, and the time course of the behavioral manifestations of mechanical and thermal hypersensitivity, to be detected by measures of evoked and spontaneous pain-like behavior. We will then determine the relative contribution of different immune cells to the two inflammatory model pain phenotypes using a mixture of mice where a genetic mutation has resulted in loss of a particular immune cell, and validated strategies for depleting specific immune cells. The second specific aim is to use unbiased proteomic and bioinformatics techniques to identify all the immune protein mediators expressed in the two models at the site of inflammation using tryptic digestion, isobaric TMT peptide tagging, fractionation and mass spectrometry. In addition, we will determine which receptors for the induced immune protein mediators are expressed by purified dorsal root ganglion (DRG) neuronal membrane preparations using flow cytometry and biotinylation to label membrane proteins, affinity purification, trypsinization and liquid chromatography/mass spectrometry to identify peptides.
The final aim will be test which of the immune protein mediators produced by one or both of the inflammatory models and with a corresponding receptor expressed by DRG neurons activates the JAK- STAT, NFKB, ras/MAPK (ERK and p38), PLC-DAG, IP3 and PI3K signal transduction pathways in DRG neurons or causes calcium influx. We will them perform whole cell patch electrophysiology in current and voltage clamp mode to identify if a candidate immune protein mediator alters excitability, and if so by what changes in TRP and voltage-gated sodium ion channel threshold and kinetics.

Public Health Relevance

We propose to use a systematic approach for identifying the immune protein mediators that act on nociceptors to produce inflammatory pain. Discovering exactly how the immune system operates on the nervous system to produce pain is likely to reveal targets suitable for the generation of novel analgesics.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37NS039518-13
Application #
8690172
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Oshinsky, Michael L
Project Start
1999-12-01
Project End
2015-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
13
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02115
Talbot, Sébastien; Foster, Simmie L; Woolf, Clifford J (2016) Neuroimmunity: Physiology and Pathology. Annu Rev Immunol 34:421-47
Vardeh, Daniel; Mannion, Richard J; Woolf, Clifford J (2016) Toward a Mechanism-Based Approach to Pain Diagnosis. J Pain 17:T50-69
Ghasemlou, Nader; Chiu, Isaac M; Julien, Jean-Pierre et al. (2015) CD11b+Ly6G- myeloid cells mediate mechanical inflammatory pain hypersensitivity. Proc Natl Acad Sci U S A 112:E6808-17
Talbot, Sébastien; Abdulnour, Raja-Elie E; Burkett, Patrick R et al. (2015) Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation. Neuron 87:341-54
Latremoliere, Alban; Latini, Alexandra; Andrews, Nick et al. (2015) Reduction of Neuropathic and Inflammatory Pain through Inhibition of the Tetrahydrobiopterin Pathway. Neuron 86:1393-406
Vicuña, Lucas; Strochlic, David E; Latremoliere, Alban et al. (2015) The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell-derived leukocyte elastase. Nat Med 21:518-23
Gewandter, Jennifer S; Dworkin, Robert H; Turk, Dennis C et al. (2015) Research design considerations for chronic pain prevention clinical trials: IMMPACT recommendations. Pain 156:1184-97
Chiu, Isaac M; Barrett, Lee B; Williams, Erika K et al. (2014) Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity. Elife 3:
Bruehl, Stephen; Apkarian, A Vania; Ballantyne, Jane C et al. (2013) Personalized medicine and opioid analgesic prescribing for chronic pain: opportunities and challenges. J Pain 14:103-13
Brenneis, Christian; Kistner, Katrin; Puopolo, Michelino et al. (2013) Phenotyping the function of TRPV1-expressing sensory neurons by targeted axonal silencing. J Neurosci 33:315-26

Showing the most recent 10 out of 19 publications