Ion channel clustering in myelinated axons is essential for proper nervous system function. Ion channels are clustered at nodes of Ranvier through neuron-glia interactions. However, the mechanisms responsible for channel clustering remain poorly understood. Recent studies suggest that multiple mechanisms may contribute to node formation. Among these, the axonal submembranous cytoskeleton comprised of ankyrins and spectrins has been proposed to be key components. In particular, nodes of Ranvier themselves are enriched with ankyrinG (ankG) and ?IV spectrin;ankG is thought to bind directly to the Na+ and K+ channels, and then link to the actin cytoskeleton through ?IV spectrin. At paranodes, both ankyrinB and ?II spectrin are clustered, although their functions at paranodes remain unknown. Paranodes are also thought to function as a paranodal diffusion barrier and a second mechanism to mediate ion channel clustering at nodes, although the mechanisms responsible for this barrier function remain unknown. Furthermore, a major impediment to elucidating the function of paranodes is the relatively few proteins that have been identified at this site. In this proposal we will seek to determine the function of the nodal and paranodal cytoskeletons in node of Ranvier assembly and maintenance. We will do this using three new mouse models that utilize Cre-Lox technology to control the temporal and spatial (cell-type specific) expression of ankG, ankB, and ?II spectrin. We will silence expression of these proteins in peripheral sensory neurons, in retinal ganglion cells, and in myelinating glia during both development and in adults. Finally, we will use proteomic methods to identify new paranodal proteins, and then seek to determine their functions.

Public Health Relevance

Nodes of Ranvier are required for proper nervous system function, and many diseases or injuries disrupt nodes. Therapies for nervous system diseases will require a detailed understanding of how nodes form. We propose that the cytoskeleton consisting of ankyrins and spectrins plays important roles in node assembly and maintenance. We have developed a variety of mutant mouse models that will allow us to test this idea.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Method to Extend Research in Time (MERIT) Award (R37)
Project #
Application #
Study Section
Synapses, Cytoskeleton and Trafficking Study Section (SYN)
Program Officer
Owens, David F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Baylor College of Medicine
Schools of Medicine
United States
Zip Code
Huang, Claire Yu-Mei; Zhang, Chuansheng; Ho, Tammy Szu-Yu et al. (2017) ?II Spectrin Forms a Periodic Cytoskeleton at the Axon Initial Segment and Is Required for Nervous System Function. J Neurosci 37:11311-11322
Huang, Claire Yu-Mei; Zhang, Chuansheng; Zollinger, Daniel R et al. (2017) An ?II Spectrin-Based Cytoskeleton Protects Large-Diameter Myelinated Axons from Degeneration. J Neurosci 37:11323-11334
Amor, Veronique; Zhang, Chuansheng; Vainshtein, Anna et al. (2017) The paranodal cytoskeleton clusters Na+ channels at nodes of Ranvier. Elife 6:
Marin, Miguel A; Ziburkus, Jokubus; Jankowsky, Joanna et al. (2016) Amyloid-? plaques disrupt axon initial segments. Exp Neurol 281:93-8
Yoshimura, Takeshi; Stevens, Sharon R; Leterrier, Cristophe et al. (2016) Developmental Changes in Expression of ?IV Spectrin Splice Variants at Axon Initial Segments and Nodes of Ranvier. Front Cell Neurosci 10:304
Zhang, Chuansheng; Rasband, Matthew N (2016) Cytoskeletal control of axon domain assembly and function. Curr Opin Neurobiol 39:116-21
Ko, Kwang Woo; Rasband, Matthew N; Meseguer, Victor et al. (2016) Serotonin modulates spike probability in the axon initial segment through HCN channels. Nat Neurosci 19:826-34
Huang, Yu-Mei; Rasband, Matthew N (2016) Organization of the axon initial segment: Actin like a fence. J Cell Biol 215:9-11
Marin, Miguel A; de Lima, Silmara; Gilbert, Hui-Ya et al. (2016) Reassembly of Excitable Domains after CNS Axon Regeneration. J Neurosci 36:9148-60
Rasband, Matthew N (2016) Glial Contributions to Neural Function and Disease. Mol Cell Proteomics 15:355-61

Showing the most recent 10 out of 36 publications