Babesia microti, the primary etiologic agent of human babesiosis, is a tick borne eukaryotic apicomplexan pathogen that is an increasing threat to the US public health. Although B. microti is primarily a tick borne pathogen, it can be transmitted by transfusion of infected blood. Despite the well-recognized threat, there is no FDA licensed test to screen donor blood for B. microti. This inability to prevent Babesia contamination of the US blood supply has resulted in transfusion-transmitted Babesia emerging as the leading cause of death due to microbial contamination of US blood supplies. In this phase 1 STTR application, we will focus on developing monoclonal antibodies (mAbs) for a rapid antigen-capture assay that is both sensitive and specific for the detection of B. microti antigens in human blood. This assay will fill the current gap in the ability to protect the US blood supply against B. microti-infected blood. Very few antigenic peptides have been identified in B. microti that could be used in an antigen capture assay. Consequently, in Aim 1 we will use a novel procedure to generate mAbs to the full spectrum of Babesia antigens generated during infection and identify peptides recognized by the mAbs.
In Aim 2 we will express these Babesia antigens in an innovative Toxoplasma expression system to retain conformational in addition to linear epitopes in the proteins that may be important for mAb recognition. This expression system will be used to purify a consistent amount of Babesia antigens for use in downstream assay-development and as standards for our prototype assay.
In Aim 3 we will identify non-interfering pairs of monoclonal antibodies to be used as a capture and reporter for each antigen to generate a prototype antigen capture assay for Babesia.

Public Health Relevance

Babesiosis has become the most commonly reported infection in the US associated with contaminated blood transfusion. In infants, the elderly, immunocompromised, or splenectomized individuals, infection can cause an array of severe manifestations including substantial hemolysis, disseminated intravascular coagulation, multiple organ failure;acute respiratory distress syndrome, renal and hepatic failure, myocardial infarction, and death, with the mortality rate of transfusion-acquired infection being reported as high as 20-30%. There is currently no FDA licensed method to screen donated blood for Babesia. This application focuses on the creation of a rapid antigen-capture assay that is both sensitive and specific for the detection of Babesia antigens in human blood, which is critically needed to insure the safety of the US blood supply.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Small Business Technology Transfer (STTR) Grants - Phase I (R41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-IDM-V (12))
Program Officer
Wali, Tonu M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Biopeptides, Inc.
East Setauket
United States
Zip Code