The use of Surface Enhanced Raman Scattering (SERS) for biomolecule detection has been restricted due to the great difficulty of fabricating ultrasensitive and reproducible surface-plasmonic-resonance (SPR) substrates. Therefore, detecting extremely small amount of biomolecules for clinical application is significantly limited. In this STTR Phase II research, we propose to develop ultrasensitive (1012~1014 enhancement factors) SERS substrates with universally available Raman "hot spots" for well-reproducible biomolecule detection by combining optical field enhancements from both resonant photonic devices and metallic nanoentities. Compared with existing SPR substrates made by spin-coating colloidal nanoparticles or nanowire solutions, we engineer the SERS substrate using silica nanotubes coated with universally distributed silver nanoparticles, which can dramatically increase the density of the Raman scattering "hot spots". We also employ highly robust Si3N4 guided-mode-resonance (GMR) gratings and resonant microcavity array to achieve even higher local electric field for SERS sensing. To link these two innovations, we will apply a highly exquisite tool---electric tweezers, to assemble the SPR-active nanotubes into the resonant photonic devices with unbeatable spatial precision of at least 150 nm. In our Phase I program, we have theoretically simulated and experimentally demonstrated SPR-active silica nanotubes with nanometer-size gaps, and detected Rhodamine 6G down to 100 fM (single-molecule level) with enhancement factors of 1.1x1010. Moreover, we fabricated Si3N4 GMR gratings using state-of-the-art nanofabrication processes and experimentally achieved ~10? enhancement factors in addition to the existing SERS effect from the SPR-active silica nanotubes. In the Phase II program, we will continue to optimize the SERS substrates for ultrahigh sensitivity up to 1012~1014 enhancement factors, improve the detection probability of ultralow concentration biomolecules in real biological samples, and apply the SERS substrates in various biomedical applications. Most of all, we will resolve potential technical challenges for product commercialization, including lowering the fabrication cost, increasing the throughput, packaging the SERS substrate with fiber-optic systems and evaluating the device reliability.

Public Health Relevance

Surface Enhanced Raman Scattering (SERS) has significant potential in biomolecule detection due to its extremely high sensitivity in hot spots. However, the average sensitivity, repeatability, and reliability of current SERS techniques cannot meet the requirements of many biomedical applications. This project focuses on the development of SERS substrates with universally available Raman hot spots for ultrasensitive and well- reproducible biomolecule detection through the combination of resonant photonic devices and metallic nanoentities, which has significant potential for early disease detection and personal diagnostics.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Small Business Technology Transfer (STTR) Grants - Phase II (R42)
Project #
9R42ES024023-02
Application #
8518836
Study Section
Special Emphasis Panel (ZRG1-IMST-S (12))
Program Officer
Shaughnessy, Daniel
Project Start
2010-09-27
Project End
2015-08-31
Budget Start
2013-09-15
Budget End
2014-08-31
Support Year
2
Fiscal Year
2013
Total Cost
$500,000
Indirect Cost
Name
Omega Optics, Inc.
Department
Type
DUNS #
102861262
City
Austin
State
TX
Country
United States
Zip Code
78759
Kim, Kwanoh; Guo, Jianhe; Liang, Z X et al. (2016) Man-made rotary nanomotors: a review of recent developments. Nanoscale 8:10471-90
Wang, Zheng; Xu, Xiaochuan; Fan, Donglei et al. (2016) Geometrical tuning art for entirely subwavelength grating waveguide based integrated photonics circuits. Sci Rep 6:24106
Kong, Xianming; Xi, Yuting; LeDuff, Paul et al. (2016) Optofluidic sensing from inkjet-printed droplets: the enormous enhancement by evaporation-induced spontaneous flow on photonic crystal biosilica. Nanoscale 8:17285-17294
Yang, Jing; Zhen, Le; Ren, Fanghui et al. (2015) Ultra-sensitive immunoassay biosensors using hybrid plasmonic-biosilica nanostructured materials. J Biophotonics 8:659-67
Wang, Alan X; Kong, Xianming (2015) Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering. Materials (Basel) 8:3024-3052
Wang, Zheng; Yan, Hai; Chakravarty, Swapnajit et al. (2015) Microfluidic channels with ultralow-loss waveguide crossings for various chip-integrated photonic sensors. Opt Lett 40:1563-6
Guo, Jianhe; Kim, Kwanoh; Lei, Kin Wai et al. (2015) Ultra-durable rotary micromotors assembled from nanoentities by electric fields. Nanoscale 7:11363-70
Kim, Kwanoh; Guo, Jianhe; Xu, Xiaobin et al. (2015) Micromotors with step-motor characteristics by controlled magnetic interactions among assembled components. ACS Nano 9:548-54
Kim, Kwanoh; Guo, Jianhe; Xu, Xiaobin et al. (2015) Recent Progress on Man-Made Inorganic Nanomachines. Small 11:4037-57
Yang, Jing; Rorrer, Gregory L; Wang, Alan X (2015) Bioenabled SERS Substrates for Food Safety and Drinking Water Monitoring. Proc SPIE Int Soc Opt Eng 9488:

Showing the most recent 10 out of 16 publications