End Stage Renal Disease (ESRD) is associated with an accumulation of """"""""uremic"""""""" toxins in essentially three categories: small water-soluble compounds, larger middle molecules, and small protein bound molecules. Current treatment modalities do not address the removal of small protein-bound substances. This research targets an ionic-hemodiafiltration-based product that removes small protein-bound solutes from blood; this function is not addressed by existing technology. This can be an extension of our unique multistage diafiltration process, with two diafiltration steps in series and substitution fluid added in a middilution mode (US Patent #6303036); or can be integrated with standard dialysis technology. An agent is added to dialysate fluid entering a first stage, causing an ionic (pH) shift of the blood, thereby dissociating a significant portion of protein-bound toxins from their conjugated protein counterparts. Once unbound, the small toxins are transported across a semi-permeable membrane by diffusive/convective mechanisms. A second stage acts to return the ionic-altered blood to a normal condition before reinfusion. This Phase I research will qualify agents to be added to the dialysate fluid entering the first stage, so as to ensure safety and efficacy. ? ?

Proposed Commercial Applications

As of 2001, there were over 300,000 ESRD patients in the US, served by over 60,000 dialysis machines; this market is expected to exceed $500 million annually by 2008. Incorporating ionic technology will provide the unique benefit of removing protein-bound toxins, thereby reducing various comorbid conditions associated with toxic accumulation, improving overall patient health, and reducing associated hospitalizations, currently representing a $600 million+ annual expenditure. Additional applications include treatment of patients intoxicated with poisons or drugs with known protein binding characteristics.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43DK063745-01
Application #
6584554
Study Section
Special Emphasis Panel (ZRG1-GMB (17))
Program Officer
Scherbenske, M James
Project Start
2003-09-01
Project End
2005-08-31
Budget Start
2003-09-01
Budget End
2005-08-31
Support Year
1
Fiscal Year
2003
Total Cost
$99,837
Indirect Cost
Name
Nephros, Inc.
Department
Type
DUNS #
120664557
City
New York
State
NY
Country
United States
Zip Code
10032