There is a considerable interest in using laser-manufacturing methods for medical applications due to their potential to reduce cost. In fact, the precision and low-force signature of lasers makes them very attractive alternatives to traditional machining methods for brittle materials such as lutetium oxyorthosilicate (LSO) and gadolinium oxyorthosilciate (GSO) used in high-resolution medical imaging. However, material damage, especially micro-scale cracking, during laser machining is a frequently encountered problem that results in added costs, needless scrap, and reduced performance/reliability. We propose to demonstrate the feasibility of developing a multibeam laser healing technique to eliminate micro-cracks formed during laser machining of brittle materials like scintillators. We will use a simultaneous multibeam approach for micromachining and defect healing to improve the strength/reliability during laser manufacturing. Experimental investigations will be supported by finite-element modeling of the process including the calculation of damage inducing thermal-stresses. The proposed research on laser healing will significantly improve both yield and reliability during laser machining, resulting in an order of magnitude reduction in cost. Additionally, the reduced inter-pixel gaps resulting from the laser pixelation technique will significantly improve detector performance. Therefore, the proposed research has great commercial relevance, especially for high-resolution medical imaging applications. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43EB005646-01A1
Application #
7109099
Study Section
Special Emphasis Panel (ZRG1-SBMI-F (10))
Program Officer
Anderson, John F
Project Start
2006-05-01
Project End
2008-04-30
Budget Start
2006-05-01
Budget End
2007-04-30
Support Year
1
Fiscal Year
2006
Total Cost
$99,099
Indirect Cost
Name
Radiation Monitoring Devices, Inc.
Department
Type
DUNS #
073804411
City
Watertown
State
MA
Country
United States
Zip Code
02472