This SBIR Phase I project will determine the feasibility of using Self-Digitization (SD) microfluidic technology as a commercially competitive nucleic acid quantification (NAQ) platform. Quantification of nucleic acids (both DNA and RNA) is utilized in various fields including general research, biomedical research, and clinical diagnostics, with specific applications in areas such as measuring gene expression levels, disease diagnostics including pathogen/viral load monitoring, cancer diagnostics, and more. Self-Digitization is a simple, robust technology that efficiently uses a network of channels and wells to spontaneously partition samples into an array of predefined well volumes. This platform is ideally suited for digital PCR (dPCR) applications. Digital PCR works by partitioning samples into thousands or even millions of individual volumes where each volume may or may not contain target DNA. Only volumes with target DNA give a positive signal resulting in a "digital" yes/no signal, from which Poisson statistics can then give direct determination of sample concentrations. Digital PCR directly provides absolute quantification, is robust against variations in reaction efficiency, is incredibly sensitive and has nearly unlimited resolution capabilities, making it technically superior to the current NAQ "gold standard" of qPCR. However, no commercial dPCR system is currently able to be economically competitive with qPCR. The objective of this proposal is to show the technical feasibility of a new centrifugal SD filling method within an optical disc (OD) style platform. The simplicity and flexibility of the SD system, its implementation within a method that enables parallelization and high-throughput experimentation, and the adaptation of existing commercialized components to achieve a complete platform will result in a cost-competitive product that will surpass existing commercial dPCR platforms, while also directly competing with qPCR systems. The approach will first validate the technical aspects of the platform by developing a thorough understanding of the loading/digitization mechanism, optimizing design features to maximize performance within a closed system, and to develop complete designs to meet needs in specific application categories. This will initially be carried out in scaled down versions to maximize iteration efficiency and then expanded to full prototype scale. Validation of this approach would then lead to future production of a mass producible device product and complete instrumentation setup. The product would be immediately useful for general biomedical research applications, and the workflow and nature of the closed system would also make it amenable to future clinical applications in a variety of medical fields.

Public Health Relevance

This research will demonstrate the validity of the Self-Digitization platform to establish a new commercial product for performing digital PCR (dPCR) that is directly competitive with existing qPCR systems. Quantification of nucleic acids (both DNA and RNA) is utilized in various fields including general research, biomedical research, and clinical diagnostics, with specific applications in areas such as measuring gene expression levels, disease diagnostics including pathogen/viral load monitoring, cancer diagnostics, and more. Digital PCR provides superior results to qPCR and a system that is economically competitive could be paradigm shifting for the research fields it impacts.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43EB018125-01
Application #
8645375
Study Section
Special Emphasis Panel (ZRG1-IMST-S (12))
Program Officer
Korte, Brenda
Project Start
2014-09-18
Project End
2015-03-31
Budget Start
2014-09-18
Budget End
2015-03-31
Support Year
1
Fiscal Year
2014
Total Cost
$149,995
Indirect Cost
Name
Lamprogen, Inc.
Department
Type
DUNS #
078456317
City
Seattle
State
WA
Country
United States
Zip Code
98115