Significance: Although patient simulators have demonstrated improved learning outcomes in medical training, there is a significant lack of realism. Thus, they do not effectively provoke a realistic emotional response in trainees. This significantly limits their educational value to the emergency medical service (EMS) training agencies, as does ? in the case of mannequins ? their cost, reliance on electricity, and lack of portability. To address these significant limitations of the current medical patient simulators, the PI has developed PerSimTM, a patient simulator using augmented reality (AR) and currently a product offered by the PI's company. However, additional research and development in is needed to effectively support HAZMAT training scenarios. Commercial Need: Based on interviews with individuals at training agencies within EMS agencies, HAZMAT training scenarios would be of significant value. Since being released in 4th quarter 2017, there are 4 sites that have purchased PerSimTM for ~$20-30K each and are using the system for EMS training, effectively training over 100 trainees per year. Moreover, the PI has a joint marketing agreement with Microsoft, which boost the company?s marketing efforts. Preliminary Data: The PI has developed PerSimTM an AR-based patient simulator. Via the Microsoft HoloLens AR display, the system projects high-resolution, realistic animations of a patient onto any surface a trainee chooses, such as low-fidelity mannequin as a physical reference for haptic input during procedures. The instructor uses a handheld tablet as both a controller for the simulation and an automated assessment system to track trainee performance. The system utilizes another tablet to act as a defibrillator and a physiologic monitor to provide real-time vital sign and heart rhythm data. The system?s control interfaces and registration algorithms are provisionally patented.
Specific Aims : This project proposes to develop and evaluate HAZMAT training scenarios in the PI's innovative AR-based patient simulator, PerSimTM.
In Specific Aim 1, the PI will work with medical artists from UT Health and a HAZMAT expert co-I to create realistic scenarios and integrate them with the PerSimTM system. The PI plans to develop textures and animations based on NFPA 472 Standard for Competence of Responders to Hazardous Materials, specifically poisonous gas (e.g., phosgene) inhalation, corrosive materials (e.g., a vesicular agent such as Mustard), and poisonous materials (e.g., organophosphate).
In Specific Aim 2, the PI will evaluate the realism of the HAZMAT scenarios through user studies with HAZMAT professionals as participants.

Public Health Relevance

The proposed research is relevant to public health because it enables more effective training for HAZMAT professionals, which will result in saving lives. This project is relevant to NIEHS?s mission because it applies augmented reality in a novel approach to enhance the realism of HAZMAT simulation and training, thereby better preparing trainees for real scenarios.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43ES030578-01
Application #
9752938
Study Section
Special Emphasis Panel (ZES1)
Program Officer
Ahlmark, Kathy
Project Start
2019-07-01
Project End
2020-12-31
Budget Start
2019-07-01
Budget End
2020-12-31
Support Year
1
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Medcognition, Inc.
Department
Type
DUNS #
080668081
City
San Antonio
State
TX
Country
United States
Zip Code
78258