In HIV pre-exposure prophylaxis (PrEP) trials sub-optimal oral and microbicide adherence has precluded accurate estimation of drug efficacy. Measurement of adherence is a major, unmet challenge. Other objective measures of adherence in microbicide trials have been tested, but none measure the actual use of the product. We propose to rapidly develop an alternative, breath-based, adherence monitoring tool for investigators studying microbicide administration by leveraging technology already developed for oral dosing. Xhale has developed a breath-based technology, termed the SMART(R) (Self Monitoring and Reporting Therapeutics) Adherence System, to monitor individual subject, dose-by-dose, oral medication adherence in real-time using FDA-approved GRAS flavorants as the adherence enabling marker (AEM). The AEM (e.g., 2- butanol), which is easily and safely incorporated into drug product without altering its manufacturing processes or bioavailability, is rapidly absorbed in the stomach and small intestine, and metabolized to a volatile metabolite (e.g., 2-butanone) that quickly appears in breath. As the subject provides a breath sample by "blowing" directly into the SMART(R) device (miniature gas chromatograph, mGC), a facial picture is taken. Measurement of this metabolite(s) by the mGC unambiguously documents ingestion of oral drugs by a specific individual. Detailed trial data is stored locally i the mGC device and transmitted real-time using wireless or cellular router technology to a central data repository for analysis. The latter is an internet-based database for review by authorized individuals anywhere on the globe with an internet connection. SMART(R) is portable and designed to be self-administered by subjects. Although originally designed for oral drugs, SMART(R) can be easily adapted to document placement of microbicides. Using tenofovir (TFV) gel as a model agent, the aims of this grant are to construct a SMART(R) system optimized for microbicide applications:
Aim 1. Using a crossover design in men (rectal route) and women (rectal and vaginal routes), identify an optimal AEM (type and dose) for microbicide applications. (Time: 0-12 months) Aim 2. Develop strategies (i.e., multiple-barrel syringe applicators) to effectively incorporate the optimal AEM into the placement of rectal and vaginal TFV gels that requires no change in their manufacturing processes, and preserves a favorable concentration-time profile of the breath marker. (Time: 12-24 months) Aim 3. Optimize the SMART(R) device for microbicide applications. (Time: 0-24 months) Measurement of microbicide adherence using SMART(R) would allow optimal analysis of PrEP trials by providing real-time actionable adherence data. By providing a "gold standard" tool to monitor microbicide adherence, SMART(R) could not only provide a superior trial dataset, but could also be used to identify behaviors associated with poor adherence and enable strategies to mitigate them. 1

Public Health Relevance

In HIV pre-exposure prophylaxis trials such as VOICE, sub-optimal oral and vaginal product adherence has precluded accurate estimation of drug efficacy. We propose to rapidly develop an alternative, breath-based, adherence monitoring tool for clinical investigators studying vaginal and rectal routes of drug (microbicide). Measurement of microbicide adherence using exhaled breath would allow optimal analysis of pre-exposure prophylaxis trials and other clinical trials using vaginal and rectal gels.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43MH103057-01
Application #
8659647
Study Section
Special Emphasis Panel (ZRG1-AARR-E (81))
Program Officer
Delcarmen-Wiggins, Rebecca
Project Start
2014-04-01
Project End
2016-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
1
Fiscal Year
2014
Total Cost
$311,261
Indirect Cost
Name
Xhale, Inc.
Department
Type
DUNS #
614048366
City
Gainesville
State
FL
Country
United States
Zip Code
32608