Polgenix, Inc. is developing an imaging instrument, the """"""""2-photon ophthalmoscope"""""""", or """"""""2PO"""""""", with the capability for non-invasive, repetitive and high-resolution imaging of biochemical processes within human retina. This device will allow early detection of age- and disease- related changes in the eye, long before pathological manifestations of retinal disease become discernable by existing methods. Such real-time retinal imaging will also be critical for evaluation of various therapies for retinal pathology. Thus, patients susceptible to retinal disease could be diagnosed with 2PO and treated well before vision loss occurs. Once developed, the instrument will be used initially for ophthalmic drug screening and establishing objective biomarkers for retinal disease in animal models. Then it will be employed for clinical trials and ultimately for monitoring retinal health and the impact of therapy in patients. Early application of the device toward the development of effective ophthalmic therapies and clinical diagnosis will be leveraged through collaboration with experts in biochemical processes in the eye and high-resolution adaptive optics ophthalmic imaging from Case Western Reserve University and the University of Rochester, respectively.

Public Health Relevance

We seek to develop a novel instrument for noninvasive imaging of the back of the eye with sub-cellular resolution. The instrument will visualize and quantify the age or disease related changes in the biochemical processes within human retina. Our goal is to further understanding of the biochemistry of vision and to enable rapid evaluation of the impact of therapeutic interventions aimed at retinal diseases at the earliest stages, before retina is damaged and vision is irreparably diminished.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Chen, Wen G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Polgenix, Inc.
United States
Zip Code
Schwarz, Christina; Sharma, Robin; Cheong, Soon Keen et al. (2018) Selective S Cone Damage and Retinal Remodeling Following Intense Ultrashort Pulse Laser Exposures in the Near-Infrared. Invest Ophthalmol Vis Sci 59:5973-5984
Sharma, Robin; Schwarz, Christina; Hunter, Jennifer J et al. (2017) Formation and Clearance of All-Trans-Retinol in Rods Investigated in the Living Primate Eye With Two-Photon Ophthalmoscopy. Invest Ophthalmol Vis Sci 58:604-613
Marcos, Susana; Werner, John S; Burns, Stephen A et al. (2017) Vision science and adaptive optics, the state of the field. Vision Res 132:3-33
Rossi, Ethan A; Granger, Charles E; Sharma, Robin et al. (2017) Imaging individual neurons in the retinal ganglion cell layer of the living eye. Proc Natl Acad Sci U S A 114:586-591
Sharma, Robin; Williams, David R; Palczewska, Grazyna et al. (2016) Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye. Invest Ophthalmol Vis Sci 57:632-46
Sharma, Robin; Schwarz, Christina; Williams, David R et al. (2016) In Vivo Two-Photon Fluorescence Kinetics of Primate Rods and Cones. Invest Ophthalmol Vis Sci 57:647-57
Zhang, Jianye; Kiser, Philip D; Badiee, Mohsen et al. (2015) Molecular pharmacodynamics of emixustat in protection against retinal degeneration. J Clin Invest 125:2781-94
Zhang, Ning; Tsybovsky, Yaroslav; Kolesnikov, Alexander V et al. (2015) Protein misfolding and the pathogenesis of ABCA4-associated retinal degenerations. Hum Mol Genet 24:3220-37
Palczewska, Grazyna; Dong, Zhiqian; Golczak, Marcin et al. (2014) Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye. Nat Med 20:785-9
Palczewska, Grazyna; Vinberg, Frans; Stremplewski, Patrycjusz et al. (2014) Human infrared vision is triggered by two-photon chromophore isomerization. Proc Natl Acad Sci U S A 111:E5445-54

Showing the most recent 10 out of 14 publications