A resorbable, low viscosity, injectable cement is proposed for use in repair of bone fractures. The proposed cement has a two-part formulation. Part A includes an unsaturated polyester, poly(propylene glycol-co-fumaric acid), a vinyl monomer, an HA/Ca-carbonate filler and an accelerator. Part B contains an initiator suspended in a non-reacting fluid vehicle and an inhibitor to control mixing and working time. The use of HA supports osteoconductivity, while acting as a buffer for acidic degradation products. The goals of this Phase II proposal involve optimizing the cement formulation in-vivo and establishing the functionality of the cement. Candidate formulations differing in viscosity will be screened in rats (tibial defect model), prior to evaluation in rabbits (distal femoral osteotomies) and sheep (midshaft tibial defect). Specifically, eight tasks are proposed: 1) synthesis and characterization of PPF, 2) cement formulation, 3) characterization of the chemistry of the candidate cements, 4) mechanical characterization of the candidate cements, 5) material loss by cure in aqueous medium, 6) in-vivo screening of bone cements of varying viscosities in rats, 7) in-vivo histological and mechanical evaluation in rabbits, and 8) in-vivo evaluation of osseointegration and functionality in a sheep model.

Proposed Commercial Applications

A biodegradable bone cement that would provide immediate structural support and subsequently allow normal bone healing and remodeling would have immediate orthopedic and maxillofacial applications. The injectable format is critical to ensuring that this cement can also be used in minimally invasive procedures allowing the costs of treatment to remain low. Reasorbability would reduce the potential for long-term implant complications associated with foreign materials and eliminate the need for implant removal.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
5R44AR044317-03
Application #
6055628
Study Section
Special Emphasis Panel (ZRG4-SSS-5 (19))
Program Officer
Panagis, James S
Project Start
1996-08-15
Project End
2001-08-31
Budget Start
1999-09-01
Budget End
2001-08-31
Support Year
3
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Cambridge Scientific, Inc.
Department
Type
DUNS #
City
Cambridge
State
MA
Country
United States
Zip Code
02138
Lewandrowski, K U; Gresser, J D; Wise, D L et al. (2000) Osteoconductivity of an injectable and bioresorbable poly(propylene glycol-co-fumaric acid) bone cement. Biomaterials 21:293-8
Lewandrowski, K U; Gresser, J D; Bondre, S et al. (2000) Developing porosity of poly(propylene glycol-co-fumaric acid) bone graft substitutes and the effect on osteointegration: a preliminary histology study in rats. J Biomater Sci Polym Ed 11:879-89
Lewandrowski, K U; Bondre, S; Gresser, J D et al. (1999) Augmentation of osteoinduction with a biodegradable poly(propylene glycol-co-fumaric acid) bone graft extender. A histologic and histomorphometric study in rats. Biomed Mater Eng 9:325-34
Lewandrowski, K U; Bondre, S P; Gresser, J D et al. (1999) Improved osteoconduction of cortical bone grafts by biodegradable foam coating. Biomed Mater Eng 9:265-75