The proposed effort focuses on the final development of a high-frequency (100 MHz), broadband ultrasound microsystem designed to image cellular structure/tissue along the gastrointestinal (GI) tract. The unit fits within a standard GI endoscope. It consists of a paraboloid transmitter, a 16 x 16 ultrasound receiver array, a read-out integrated circuit (ROIC), and an interposer layer that links the latter two items. Fourteen-bit digitized data flow from the ROIC to an external computer where three-dimensional images are formed. The nominal sampled volume extends below the GI tract surface to depths in the range 1-3 mm, depending on the proximity of the sensor to the GI wall. The diameter of the probed volume ranges from 0.6 mm to 0.9 mm. The main functions of the imager include: 1) the imaging of pre-cancerous dysplastic mucosa, polyps, and adenomas, 2) real-time grading of dysplasia (pre-cancerous tissue), 3) immediate viewing of cellular structure in tumors (e.g., squamous cell carcinoma and adenocarcinoma, benign growths), 4) as required, guidance for directing fine-needle aspiration biopsies to regions that pose the greatest threat, and 5) the system serves as a patient friendly, pre-cancer diagnostic for severe gastroesophageal reflux disease (Barrett's esophagus). Overall, the suggested imager provides a new opportunity for the detection of pre-cancerous tissue along the GI tract, which at present is usually a chance finding and cannot be recognized endoscopically. The developmental prototype has a novel bistatic architecture aimed at increasing system sensitivity, reducing the time required to obtain an image, and simplifying the receiver system. A new sol-gel PZT (PbZr0.6Ti0.4O3) thick film, invented as part of the preceding NIH program, is used as the transducer material. It is much improved over previous efforts in this area. The PZT thick film density is 89-90% of the full thin film density and the thick film piezoelectric coefficients are very close to those of thin films. The advantage of the new thick film is 1) its patterning and fabrication process is well established and many methods are available, 2) it supports a very large etch selectivity of 15:1, 3) the fabrication/assembly process is straightforward and amenable to large-scale production, and 4) the fabrication process yields very inexpensive transducer arrays. The latter is very important because the transducer array/interposer/ROIC will be used only once and discarded. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
5R44CA110214-03
Application #
7275985
Study Section
Special Emphasis Panel (ZRG1-SBIB-L (10))
Program Officer
Baker, Houston
Project Start
2004-07-06
Project End
2010-08-31
Budget Start
2007-09-01
Budget End
2010-08-31
Support Year
3
Fiscal Year
2007
Total Cost
$762,351
Indirect Cost
Name
Geospace Research, Inc.
Department
Type
DUNS #
782323885
City
El Segundo
State
CA
Country
United States
Zip Code
90245
Liu, Changgeng; Djuth, Frank T; Zhou, Qifa et al. (2013) Micromachining techniques in developing high-frequency piezoelectric composite ultrasonic array transducers. IEEE Trans Ultrason Ferroelectr Freq Control 60:2615-25
Liu, Changgeng; Djuth, Frank; Li, Xiang et al. (2012) Micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular array. Ultrasonics 52:497-502
Zhou, Qifa; Wu, Dawei; Liu, Changgeng et al. (2010) Micro-machined high-frequency (80 MHz) PZT thick film linear arrays. IEEE Trans Ultrason Ferroelectr Freq Control 57:2213-20
Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang et al. (2009) Very high frequency (beyond 100 MHz) PZT kerfless linear arrays. IEEE Trans Ultrason Ferroelectr Freq Control 56:2304-10