The ultimate goal of this program is to enable a new generation of high performance, low cost ophthalmic Optical Coherence Tomography OCT technology based on new MEMS-tunable vertical cavity surface-emitting laser (MEMS-VCSEL) swept light sources. This will be accomplished by developing, validating, and commercializing VCSEL technology for swept source OCT (SS-OCT) at 850nm and 1050nm wavelengths used for ophthalmic imaging. This work builds upon strong preliminary data using optically pumped VCSELs for OCT at both 1310nm and 1050nm obtained by Praevium Research and collaborators at the Massachusetts Institute of Technology (MIT). This prior work has demonstrated numerous performance advantages of VCSELs for SS-OCT imaging. The unique features of VCSELs enable fundamental axial scan rates up to 1MHz, 20-40x faster than current commercial spectral domain OCT (SD-OCT) ophthalmic systems, adjustable sweep rates enabling high speed and long imaging range operating regimes, with imaging ranges >10x more than commercial SD-OCT ophthalmic systems. These advantages promise to enable a cost-effective, multi-modal OCT instrument capable of retinal, anterior eye and axial eye length imaging. This new generation of ophthalmic technology will enable wide field 3D-OCT retinal imaging for assessing retinal pathology, imaging the anterior eye for improved refractive power measurement, and axial eye length imaging for improved intraocular lens (IOL) implant assessment. The unique performance features of VCSELs will also facilitate functional imaging such as Doppler and polarization-sensitive OCT (PS-OCT). The proposed program will build upon results from optically pumped, amplified 1310nm VCSELs from Praevium Research under a previous NIH-funded effort on VCSELs for OCT cancer imaging, to develop new electrically pumped, high power VCSELs at 850nm and 1050nm for ophthalmic imaging. These advances are made feasible by lower power requirements for ophthalmic OCT and mature Gallium Arsenide materials. A pure electrically pumped VCSEL technology would represent the first monolithic wafer-scale laser source for SS-OCT, significantly reducing the cost of laser sources and OCT systems. This would in turn enable penetration of ophthalmic OCT into new markets and clinical settings. These broad goals will be realized by addressing laser development, OCT system development, and clinical system validation. VCSEL performance will be increased by incorporating advanced designs and processing methods, with each generation of VCSELs integrated into ongoing clinical studies with collaborators in retinal, whole eye, and anterior eye imaging.

Public Health Relevance

This effort is expected to impact public health by creating a new high performance, low-cost generation of ophthalmic technology based on Optical Coherence Tomography (OCT) using new tunable vertical cavity surface-emitting lasers (VCSELs). This new technology will enable wide field 3-dimensional retinal imaging for assessing retinal pathology, imaging the anterior eye for improved refractive power measurement, axial eye length imaging for improved intraocular lens (IOL) implant assessment, and new modes of functional eye imaging. Reduced system cost will promote expansion of these capabilities into a broader range of clinical settings.

National Institute of Health (NIH)
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Wujek, Jerome R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Praevium Research, Inc.
Santa Barbara
United States
Zip Code
Lee, Hsiang-Chieh; Ahsen, Osman Oguz; Liang, Kaicheng et al. (2016) Circumferential optical coherence tomography angiography imaging of the swine esophagus using a micromotor balloon catheter. Biomed Opt Express 7:2927-42
Novais, Eduardo A; Adhi, Mehreen; Moult, Eric M et al. (2016) Choroidal Neovascularization Analyzed on Ultrahigh-Speed Swept-Source Optical Coherence Tomography Angiography Compared to Spectral-Domain Optical Coherence Tomography Angiography. Am J Ophthalmol 164:80-8
Lane, Mark; Moult, Eric M; Novais, Eduardo A et al. (2016) Visualizing the Choriocapillaris Under Drusen: Comparing 1050-nm Swept-Source Versus 840-nm Spectral-Domain Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci 57:OCT585-90
John, Demis D; Burgner, Christopher B; Potsaid, Benjamin et al. (2015) Wideband Electrically-Pumped 1050 nm MEMS-Tunable VCSEL for Ophthalmic Imaging. J Lightwave Technol 33:3461-3468
Lee, ByungKun; Choi, WooJhon; Liu, Jonathan J et al. (2015) Cardiac-Gated En Face Doppler Measurement of Retinal Blood Flow Using Swept-Source Optical Coherence Tomography at 100,000 Axial Scans per Second. Invest Ophthalmol Vis Sci 56:2522-30
Adhi, Mehreen; Ferrara, Daniela; Mullins, Robert F et al. (2015) Characterization of Choroidal Layers in Normal Aging Eyes Using Enface Swept-Source Optical Coherence Tomography. PLoS One 10:e0133080
Choi, WooJhon; Moult, Eric M; Waheed, Nadia K et al. (2015) Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy. Ophthalmology 122:2532-44
de Carlo, Talisa E; Adhi, Mehreen; Lu, Chen D et al. (2015) Ultra-High Resolution Optical Coherence Tomography Imaging of Unilateral Drusen in a 31 Year Old Woman. Clin Med Rev Case Rep 2:
Ahsen, Osman O; Lee, Hsiang-Chieh; Giacomelli, Michael G et al. (2014) Correction of rotational distortion for catheter-based en face OCT and OCT angiography. Opt Lett 39:5973-6
Tsai, Tsung-Han; Ahsen, Osman O; Lee, Hsiang-Chieh et al. (2014) Endoscopic optical coherence angiography enables 3-dimensional visualization of subsurface microvasculature. Gastroenterology 147:1219-21

Showing the most recent 10 out of 16 publications