Heart valve regurgitation is a serious condition related to heart disease. The most common and effective surgical method for treating this disease is with the use of an annuloplasty ring, which reduces the size of a dilated valve annulus to restore normal function. Many patients do not receive this procedure, however, either because they are too sick to undergo open heart surgery, or their condition has not yet progressed to the point at which surgery is justified. To address this large untreated patient population, many efforts have been undertaken to develop technology to repair leaky valves via catheter. Of these, the Millipede concept is the only device which can perform a true ring annuloplasty. This concept uses a ring that can both expand and contract under a radial force and has many small barbed anchors around its perimeter. After implant, a novel locking mechanism holds the ring at the desired diameter. The implantation process is performed by first inserting the delivery tool, an oversized wire """"""""basket"""""""", into the annulus. This wire basket is larger than the annulus in diameter, but flexible enough to conform to the annular dimensions, which allows the user to """"""""find"""""""" the annular tissue regardless of the size or shape of the annulus. Once placed in the annulus, the wires provide a series of rails, or delivery paths, over which the ring is delivered. The result is an automatic alignment of the ring and the annulus. Once aligned, a simple forward push of the ring drives the barbed anchors into the tissue and secures the ring in place. The basket is then contracted down and removed. In Phase II of this project we will surgically implant the prototypes developed in Phase I in animals. After developing a fully functional delivery system and conducting in vitro durability testing on the ring, we will perform percutaneous implants in animals.

Public Health Relevance

The goal of this project is to develop a sutureless annuloplasty ring for the treatment of dilated, leaking heart valves. This will lead to an annuloplasty ring that can be implanted without surgery, which will benefit a significant number of patients who have valve disease but are not candidates for surgery.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
2R44HL102961-02
Application #
8198028
Study Section
Special Emphasis Panel (ZRG1-CVRS-B (10))
Program Officer
Miller, Marissa A
Project Start
2010-04-01
Project End
2013-04-30
Budget Start
2011-08-15
Budget End
2012-04-30
Support Year
2
Fiscal Year
2011
Total Cost
$608,533
Indirect Cost
Name
MC3, Inc.
Department
Type
DUNS #
806687406
City
Ann Arbor
State
MI
Country
United States
Zip Code
48103