Nanomaterials Research's primary objective for this SBIR project is the design, development, and demonstration of a better sensor technology for the detection of hydrogen sulfide Hydrogen sulfide is a colorless, flammable gas that is highly toxic It reacts with the enzymes in the blood that inhibit cell respiration At high concentrations, it can literally shut off the lungs, while lower levels can burn the respiratory tract and cause eye irritation This gas is encountered in a wide range of industries, and a number of standards have been established for occupational exposure The OSHA Permissible Exposure Limit (PEL) is 10 ppm, the Short Term Exposure Limit (STEL) is 15 ppm, and exposures of 300 ppm or greater are considered immediately dangerous to life and health (IDLH) Because of the potential for adverse health effects at low concentrations, the industrial hygiene community is continually seeking improved performance from hydrogen sulfide sensors Specific requirements include reliable and accurate detection in real time, quantitative measurement capabilities, low purchase and life cycle costs, and low power consumption (for portability) Sensors meeting these requirements will find numerous applications within the health and safety field In addition, there are several potential spin-off opportunities in leak detection, emission monitoring, and process control Nanomaterials' approach is to utilize alternative ceramic oxide materials, and a unique multilayer fabrication process to accomplish the objectives of this project The work plan includes optimization of the sensor materials, sensor element fabrication, sensor element packaging, in-house and external evaluation of the sensors, and establishing the foundation for new instrument development The ultimate aim is a low-cost, low-power sensor that can be used in a new type of personal monitor The envisioned monitor is a low profile, credit card sized """"""""smart-card"""""""" that can not only alert the wearer when unsafe concentrations have been encountered but also to track cumulative individual worker exposure to a particular toxic gas species. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute for Occupational Safety and Health (NIOSH)
Type
Small Business Innovation Research Grants (SBIR) - Phase II (R44)
Project #
6R44OH007471-03
Application #
6869816
Study Section
Special Emphasis Panel (ZRG1-SOH (10))
Program Officer
Board, Susan
Project Start
2003-09-16
Project End
2005-09-15
Budget Start
2003-09-16
Budget End
2004-09-15
Support Year
3
Fiscal Year
2003
Total Cost
$373,430
Indirect Cost
Name
Synkera Technologies, Inc.
Department
Type
DUNS #
130993384
City
Longmont
State
CO
Country
United States
Zip Code
80503