Alzheimer's disease (AD) is reaching epidemic proportions, and in the absence of effective treatments, prevention strategies are needed. Accumulating evidence suggests that sleep plays an important role in regulating amyloid deposition, a hallmark of AD pathology. Both sleep disturbance and obstructive sleep apnea (OSA), a disorder characterized by frequent pauses in breathing during sleep and leading to hypoxemia and sleep fragmentation, are highly prevalent in AD and are associated with progression of AD pathology. Work from our group and others has shown that sleep disruption is associated with increased amyloid deposition in preclinical AD. Our group has pioneered the use of high density EEG (hdEEG, 256 channels) to demonstrate that sleep is not uniform throughout the brain, but is locally regulated and related to plastic changes during waking; different parts of the brain fall asleep at different times, such that certain brain regions may experience chronic deficits in local sleep. Further, this phenomenon has been shown by our group to occur in a variety of neuropsychiatric disorders. Importantly, we have recently shown that OSA is associated with a local deficit in sleeping brain activity in the posterior cingulate region, in precisely the same area where peak amyloid deposition occurs in AD, suggesting a mechanism by which OSA exacerbates AD pathology. Our overarching research objective is to identify AD risk factors and mechanisms that can be modified in midlife to prevent or delay progression to AD. Sleep provides such a target. The 3 Specific Aims of this study are to determine over a 2 year period (1) the association of OSA with amyloid deposition and neural damage; (2) whether OSA treatment decreases progression of AD pathology and memory loss; and (3) the effect of local sleep deficits in the cingulate cortex on AD pathology and memory loss. The proposed study will clarify which aspects of OSA-apnea/hypopnea index, hypoxemia or sleep fragmentation-contribute to AD pathology and tests the novel hypothesis that OSA-related local sleep deprivation mediates AD progression. This study will add comprehensive imaging, sleep and activity recordings including hdEEG and amyloid-PET collection to the extensive battery of data already being collected in participants enrolled in the Wisconsin Alzheimer's Disease Research Center, comprising a cohort of asymptomatic, middle-aged subjects (50-65 yrs) at risk for AD based on parental family history. The proposed study provides an unprecedented opportunity to assess the effects of OSA, sleep features, and treatment in a well characterized and longitudinally followed group of participants at increased risk for AD. Results will also provide valuable preliminary data for a large-scale pragmatic clinical trial to test the value of OSA screening and treatment to prevent progression of AD pathology in at-risk individuals.

Public Health Relevance

The goal of this research is to elucidate mechanisms by which obstructive sleep apnea leads to progression of Alzheimer's disease (AD) pathology, and determine whether treatment of apnea can slow the progression of amyloid deposition, neural damage and memory loss during the preclinical phase of AD in at-risk adults. The results of this work are expected to provide insight into mechanisms involved in AD development and are critical to informing the design of a larger scale trial of apnea treatment as a preventative measure for AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
High Priority, Short Term Project Award (R56)
Project #
1R56AG052698-01
Application #
9348885
Study Section
Clinical Neuroscience and Neurodegeneration Study Section (CNN)
Program Officer
Mackiewicz, Miroslaw
Project Start
2016-09-30
Project End
2017-08-31
Budget Start
2016-09-30
Budget End
2017-08-31
Support Year
1
Fiscal Year
2016
Total Cost
$747,638
Indirect Cost
$258,986
Name
University of Wisconsin Madison
Department
Psychiatry
Type
Schools of Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Moon, Chooza; Bendlin, Barbara B; Melah, Kelsey E et al. (2018) The association of sleep-disordered breathing and white matter hyperintensities in heart failure patients. Metab Brain Dis :
Berman, Sara E; Clark, Lindsay R; Rivera-Rivera, Leonardo A et al. (2017) Intracranial Arterial 4D Flow in Individuals with Mild Cognitive Impairment is Associated with Cognitive Performance and Amyloid Positivity. J Alzheimers Dis 60:243-252
Sprecher, Kate E; Koscik, Rebecca L; Carlsson, Cynthia M et al. (2017) Poor sleep is associated with CSF biomarkers of amyloid pathology in cognitively normal adults. Neurology 89:445-453
Racine, Annie M; Merluzzi, Andrew P; Adluru, Nagesh et al. (2017) Association of longitudinal white matter degeneration and cerebrospinal fluid biomarkers of neurodegeneration, inflammation and Alzheimer's disease in late-middle-aged adults. Brain Imaging Behav :