Systemic lupus erythematosus (SLE or lupus) is a complex, heterogeneous autoimmune disease that results in inflammation and systemic end-organ damage. Previous genome-wide association studies (GWAS) using high-density single nucleotide polymorphism (SNP) arrays have been successful in identifying >20 associations between common genetic variations (minor allele frequency (MAF) > 5%) and SLE. These loci, however, only account for a small proportion of SLE heritability and the causal variants tagged by these common variant (CV) associations are still unknown. These deficiencies, along with the advent of next generation sequencing platforms, have spurred our interest in exploring the contribution of rare variants (RV) to genetic susceptibility. The contribution of RVs to SLE susceptibility represents a critical and unmet need that is highly likely to identify important novel SLE genetic loci that current GWAS-based methods miss. For the renewal of AI063274, we will direct our efforts toward the identification and characterization of RVs by leveraging our recent progress in next-generation sequencing, concentrating on confirmed SLE risk loci and extending these studies, through exome resequencing, to loci that have escaped detection by GWAS. In addition, we have developed a novel, data driven analysis approach that will make use of the most powerful RV analysis methods for a variety of RV scenarios that we may encounter. Specifically, we propose to 1) identify RVs in established SLE risk genes through a targeted resequencing approach and quantify the contribution of RVs to the association signals marked by CVs, 2) comprehensively identify coding region RVs within the exome and quantify the extent to which they influence SLE susceptibility, and 3) perform replication resequencing in independent SLE cases and controls for regions demonstrating RV association to validate true positive RV effects. Our assembled team is the only one in the world currently conducting large-scale next generation sequencing in SLE. We have extensive and relevant experience in next generation sequencing and are well poised to leverage computational resources and sophisticated statistical expertise to ensure our success. We believe that understanding the role of RVs in the genetic architecture of SLE will result in the identification of important causal variants that influence SLE predisposition. When successfully completed, the data generated by this R01 will provide fundamental insights for functional studies and fine mapping efforts within regions of CV association and lead to important new hypotheses of autoimmune pathophysiology. !

Public Health Relevance

SLE is a debilitating disorder that affects a significant proportion of the US population. Understanding the rare variant component of SLE will result in the identification of important causal variants that influence SLE predisposition and, ultimately, provide untapped knowledge about etiology and pathogenesis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
High Priority, Short Term Project Award (R56)
Project #
2R56AI063274-07A1
Application #
8524041
Study Section
Genetics of Health and Disease Study Section (GHD)
Program Officer
Johnson, David R
Project Start
2004-12-15
Project End
2014-07-31
Budget Start
2012-08-17
Budget End
2014-07-31
Support Year
7
Fiscal Year
2012
Total Cost
$786,811
Indirect Cost
$318,471
Name
Oklahoma Medical Research Foundation
Department
Type
DUNS #
077333797
City
Oklahoma City
State
OK
Country
United States
Zip Code
73104
Demirci, F Yesim; Wang, Xingbin; Kelly, Jennifer A et al. (2016) Identification of a New Susceptibility Locus for Systemic Lupus Erythematosus on Chromosome 12 in Individuals of European Ancestry. Arthritis Rheumatol 68:174-83
Liu, Ke; Kurien, Biji T; Zimmerman, Sarah L et al. (2016) X Chromosome Dose and Sex Bias in Autoimmune Diseases: Increased Prevalence of 47,XXX in Systemic Lupus Erythematosus and Sjögren's Syndrome. Arthritis Rheumatol 68:1290-1300
Lu, Xiaoming; Zoller, Erin E; Weirauch, Matthew T et al. (2015) Lupus Risk Variant Increases pSTAT1 Binding and Decreases ETS1 Expression. Am J Hum Genet 96:731-9
Zhao, Jian; Wu, Hui; Langefeld, Carl D et al. (2015) Genetic associations of leptin-related polymorphisms with systemic lupus erythematosus. Clin Immunol 161:157-62
Martins, M; Williams, A H; Comeau, M et al. (2015) Genetic association of CD247 (CD3?) with SLE in a large-scale multiethnic study. Genes Immun 16:142-50
Armstrong, D L; Zidovetzki, R; Alarcón-Riquelme, M E et al. (2014) GWAS identifies novel SLE susceptibility genes and explains the association of the HLA region. Genes Immun 15:347-54
Morris, D L; Fernando, M M A; Taylor, K E et al. (2014) MHC associations with clinical and autoantibody manifestations in European SLE. Genes Immun 15:210-7
Chung, Sharon A; Brown, Elizabeth E; Williams, Adrienne H et al. (2014) Lupus nephritis susceptibility loci in women with systemic lupus erythematosus. J Am Soc Nephrol 25:2859-70
Wang, Shaofeng; Wen, Feng; Wiley, Graham B et al. (2013) An enhancer element harboring variants associated with systemic lupus erythematosus engages the TNFAIP3 promoter to influence A20 expression. PLoS Genet 9:e1003750
Davis, Nicholas A; Lareau, Caleb A; White, Bill C et al. (2013) Encore: Genetic Association Interaction Network centrality pipeline and application to SLE exome data. Genet Epidemiol 37:614-21

Showing the most recent 10 out of 29 publications