Enteric bacteria such as Escherichia coli are a major cause of human disease. These bacteria produce curli, extracellular protein fibers that contribute to virulence. In addition to being important pathogenicity factors, with roles in host colonization, immune activation, and cell invasion, curli act as the major proteinaceous scaffold for bacterial biofilms. Curli are biophysically classified as an amyloid fiber because they adopt a cross ?-strand fibrillar structure common to all amyloids. Amyloids have historically been associated with protein misfolding and cellular toxicity, especially neurotoxicity. Curli are not te products of protein misfolding, but instead are the result of an evolved biogenesis pathway. It is now clear that functional amyloids are widespread, with examples found in nearly all facets of cellular life. The curli system in E. coli provides a rich genetic and biochemical toolbox for the study of amyloid formation. Our long-term goal is to understand how E. coli builds an amyloid fiber, so that new therapies can be developed that rationally target this critical biological process. Knowledge gained here will have implications for both microbial pathogenesis and protein folding and misfolding. Our previous discoveries have contributed to a curli assembly model where the main fiber component CsgA and the minor subunit CsgB are secreted through the outer membrane via the lipoprotein CsgG. CsgB attaches to the surface of the cell and templates the folding of CsgA into an amyloid fiber. CsgE, an accessory protein with chaperone-like activity against CsgA, is also required for curli subunit secretion. In order to rationally develop therapeutics against virulence factors such as curli, we must better understand curli biogenesis and function.
In Aim 1 we will focus on further developing and testing the curli biogenesis model. The roles of the chaperonelike accessory protein CsgE and the outer membrane lipoprotein CsgG in directing efficient CsgA transport through the periplasm will be explored. We will also investigate the mechanics of a newly discovered periplasmic chaperone activity that is dependent on the CsgC protein.
In Aim 2 we will assess the ability of previously constructed CsgA and CsgB mutants to support biological function in well-developed in vivo biofilm assays. Furthermore, the specificity of amyloid seeding will be tested in polymicrobial biofilms. Finally, in Aim 3 we will develop small molecules with amyloid-altering capabilities. In collaboration with Fredrik Almqivst at Ume? University in Sweden, we have already identified molecules that discourage CsgA polymerization. We will further characterize these 2-pryidinone variants and screen a second generation of compounds for antiamyloid properties. The curli system has evolved as an """"""""amyloid on purpose,"""""""" and we will exploit this system in order to better understand global tenets of amyloid formation, microbial pathogenesis, and biofilm biology.

Public Health Relevance

Escherichia coli and related Gram-negatives are a major causative agent of bacterial infections worldwide. During pathogenesis, E. coli can resist host and antibiotic therapies because the bacterium enters into a biofilm state. We propose to determine how E. coli assembles and utilizes a critical extracellular biofilm determinant called curli, so that new approaches can be inspired for combating infectious disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
High Priority, Short Term Project Award (R56)
Project #
2R56AI073847-06A1
Application #
8728387
Study Section
Prokaryotic Cell and Molecular Biology Study Section (PCMB)
Program Officer
Baqar, Shahida
Project Start
2007-04-01
Project End
2014-08-31
Budget Start
2013-09-05
Budget End
2014-08-31
Support Year
6
Fiscal Year
2013
Total Cost
$352,484
Indirect Cost
$117,484
Name
University of Michigan Ann Arbor
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Cremers, Claudia M; Knoefler, Daniela; Gates, Stephanie et al. (2016) Polyphosphate: A Conserved Modifier of Amyloidogenic Processes. Mol Cell 63:768-80
Hufnagel, David A; Depas, William H; Chapman, Matthew R (2015) The Biology of the Escherichia coli Extracellular Matrix. Microbiol Spectr 3:
Chorell, Erik; Andersson, Emma; Evans, Margery L et al. (2015) Bacterial Chaperones CsgE and CsgC Differentially Modulate Human ?-Synuclein Amyloid Formation via Transient Contacts. PLoS One 10:e0140194
Evans, Margery L; Chorell, Erik; Taylor, Jonathan D et al. (2015) The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol Cell 57:445-55
Spaulding, Caitlin N; Dodson, Karen W; Chapman, Matthew R et al. (2015) Fueling the Fire with Fibers: Bacterial Amyloids Promote Inflammatory Disorders. Cell Host Microbe 18:1-2
Goyal, Parveen; Krasteva, Petya V; Van Gerven, Nani et al. (2014) Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516:250-3
DePas, William H; Syed, Adnan K; Sifuentes, Margarita et al. (2014) Biofilm formation protects Escherichia coli against killing by Caenorhabditis elegans and Myxococcus xanthus. Appl Environ Microbiol 80:7079-87
Hufnagel, David A; DePas, William H; Chapman, Matthew R (2014) The disulfide bonding system suppresses CsgD-independent cellulose production in Escherichia coli. J Bacteriol 196:3690-9
Evans, Margery L; Chapman, Matthew R (2014) Curli biogenesis: order out of disorder. Biochim Biophys Acta 1843:1551-8
Andersson, Emma K; Bengtsson, Christoffer; Evans, Margery L et al. (2013) Modulation of curli assembly and pellicle biofilm formation by chemical and protein chaperones. Chem Biol 20:1245-54

Showing the most recent 10 out of 14 publications