The type III secretion system of Gram-negative bacterial pathogens creates one of the most direct interfaces between pathogens and their hosts. These 'needle-like'molecular machines inject bacterial effector proteins directly into host cells for the purpose of destroying an innate immune response and facilitating bacterial replication, dissemination, and disease progression. Effector proteins are unique virulence factors in that they often capture or mimic the properties of host signal transduction molecules. One such target is the evolutionarily conserved Ras-superfamily of GTPases. The present study focuses on two recently identified bacterial type III effector families. First, we will characteriz the novel enzymatic mechanism of the Invasion plasmid antigen J (IpaJ) family of bacterial cysteine proteases that catalyze the proteolytic elimination of N-myristoyl modifications on host ARF GTPase cellular substrates (Aim 1). Insights gleaned from these studies will be advanced through a detailed analysis of Shigella innate immune pathway evasion, and specifically the role of protein demyristoylation in this process (Aim 2). Second, we will interrogate a large family of bacterial Guanine-nucleotide exchange factors (GEFs) required for Salmonella, Shigella, and enterohaemorrhagic E. coli pathogenesis, respectively, through their common ability to activate Rho-family GTPase signaling cascades. The studies described here will combine high-throughput genetic screening approaches with biochemical and cellular analysis to elucidate the molecular mechanisms of bacterial effector protein localization within the host cellular environment (Aim 3). Findings from these studies will be applied to uncover the system dynamics of host:pathogen interactions responsible for Shigella invasion, and particularly the role of host acidic phospholipids on bacterial GEF signaling functions (Aim 4). Developing new drugs that target bacterial effector - host enzyme complexes would be an innovative approach to combat emerging infectious disease. Therefore, by revealing molecular details of type III effector family functions, from biochemistry to systems biology, we will uncover sites of potential weakness in bacterial pathogens that may be exploited for therapeutic intervention. Importantly, these studies will also provide new insights into the pathogenic mechanisms of numerous infectious disease agents and also into the biology of the human host.

Public Health Relevance

Ras-superfamily GTPases are essential signaling molecules, and represent major targets of bacterial toxins and effector proteins. This application examines the ability of bacterial Type III effector proteins to hijack these human signal transduction networks. A deeper understanding of the enzymatic and biochemical interface between bacterial effector proteins and human GTPases, the membrane lipids that they are attached to, and the immunological systems that they regulate will lead to a more complete knowledge of numerous bacterial pathogenic mechanisms and may reveal new aspects of human infectious disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
High Priority, Short Term Project Award (R56)
Project #
2R56AI083359-06
Application #
8867486
Study Section
Host Interactions with Bacterial Pathogens Study Section (HIBP)
Program Officer
Alexander, William A
Project Start
2009-08-11
Project End
2015-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
6
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
City
Dallas
State
TX
Country
United States
Zip Code
75390
Weigele, Bethany A; Orchard, Robert C; Jimenez, Alyssa et al. (2017) A systematic exploration of the interactions between bacterial effector proteins and host cell membranes. Nat Commun 8:532
Jimenez, Alyssa; Chen, Didi; Alto, Neal M (2016) How Bacteria Subvert Animal Cell Structure and Function. Annu Rev Cell Dev Biol 32:373-397
de Jong, Maarten F; Liu, Zixu; Chen, Didi et al. (2016) Shigella flexneri suppresses NF-?B activation by inhibiting linear ubiquitin chain ligation. Nat Microbiol 1:16084
Dobbs, Nicole; Burnaevskiy, Nikolay; Chen, Didi et al. (2015) STING Activation by Translocation from the ER Is Associated with Infection and Autoinflammatory Disease. Cell Host Microbe 18:157-68
Reddick, L Evan; Alto, Neal M (2012) Correlative light and electron microscopy (CLEM) as a tool to visualize microinjected molecules and their eukaryotic sub-cellular targets. J Vis Exp :e3650