This project leverages new collaborations between biomedical and engineering investigators to develop new methods for the sorting and isolation of immune cells, where the precise trajectory of individual cells are controlled and sorted on a chip analogous to the way electrons are controlled inside computer circuits. This set of tools allows for fundamentally new methods to study phenotype, genotype, and the morphology of single or pairs of single cells, over extended periods of time with precision that is unparalleled by existing techniques, such as flow cytometry and flow cell sorting. The overall stated aims of this research are to develop the engineering platform and demonstrate a biological application for a lab-on-a-chip device that can analyze thousands of single cells over long durations, exposure to multiple stimuli, and enable the extraction of individual, high-value, cells for furthe immunological analyses (RT-PCR, clonal expansion, etc.).
We aim to 1) design and fabricate a lab-on-chip assay optimized for biological applications, 2) incorporate electromagnetic switching capability to the array complete with automated control algorithms, and 3) use this novel assay to study early cellular events in the disruption of HIV latency.

Public Health Relevance

The goal of this project is to create a new laboratory tool for the study of individual immune cells. Detailed study of cells is important in characterizing the immune response in a variety of diseases in order to develop new drugs and therapies to treat human diseases.

National Institute of Health (NIH)
High Priority, Short Term Project Award (R56)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Lawrence, Diane M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Abedini-Nassab, Roozbeh; Joh, Daniel Y; Van Heest, Melissa et al. (2016) Magnetophoretic Conductors and Diodes in a 3D Magnetic Field. Adv Funct Mater 26:4026-4034
Abedini-Nassab, Roozbeh; Joh, Daniel Y; Albarghouthi, Faris et al. (2016) Magnetophoretic transistors in a tri-axial magnetic field. Lab Chip 16:4181-4188
Abedini-Nassab, Roozbeh; Joh, Daniel Y; Van Heest, Melissa A et al. (2015) Characterizing the Switching Thresholds of Magnetophoretic Transistors. Adv Mater 27:6176-80