The objectives of our research are (1) to determine how the health of the implanted cochlea, i.e. the biological conditions near the individual cochlear-implant electrodes, affects specific psychophysical and electrophysiological measures of electrical hearing; (2) to determine the relationships of these specific measures to speech recognition with the cochlear prosthesis; and (3) to use this information to increase the benefit that hearing impaired patients receive from their prostheses. The data from these studies can be used in two ways to improve speech recognition in cochlear implant users. First, based on animal work that will correlate the pattern of pathology with functional measures, we will provide audiologists with simple clinically applicable measures they can use to gain insight into the characteristics of the individual patient's cochlea and better identify and select the best stimulation sites for an individual patient's speech processor MAP. Second the data can help the biologist and the surgeon to determine the best anatomical targets for improving implant function through tissue-preservation and tissue-engineering strategies to make the impaired cochlea more receptive to cochlear implant stimulation. Our approach involves psychophysical and electrophysiological experiments in guinea pigs as well as psychophysical, electrophysiological and speech recognition studies in humans. We measure psychophysical performance, such as perceptual integration of pulse trains, and electrophysiological performance such as the rate at which evoked neural responses grow as a function of stimulus level. These measurements are made at individual stimulation sites in guinea pigs and humans. In guinea pigs we determine the specific anatomical features in the deaf or hearing-impaired cochlea that are correlated with these measures. In humans we determine the correlation of these same measures with speech recognition in quiet and in noisy backgrounds. We can then use these measures in humans to select the best stimulation sites for an individual subject's speech processor. This approach is supported by our previous studies showing that subjects usually perform better using a processor MAP with a subset of stimulation sites, carefully selected using appropriate functional measures, than they do with a processor that uses all available sites. The work proposed in this application will deepen our understanding of the mechanisms underlying variation in speech recognition performance across users of cochlear implants and serve as a guide for establishing and testing clinical procedures that will improve performance in individual patients.

Public Health Relevance

Cochlear implant auditory prostheses have been remarkably successful in restoring communication abilities to deaf people but there is still large variabilityin performance among patients, likely due in part to the biology of the implanted ears. Our previous studies showed that the functional responses to electrical stimulation of the cochlea vary from one stimulation site to the next within a patient's multichannel implant so that each individual ear has a unique set of strengths and weaknesses. The research proposed in this application will use experiments in guinea pigs to determine the correlation between biological features of the cochlea and functional measurements, relate these finding to speech recognition ability in patients and then define clinical strategies that can improve prosthetic hearing in thousands of individual patients.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
High Priority, Short Term Project Award (R56)
Project #
2R56DC010786-06A1
Application #
9210756
Study Section
Auditory System Study Section (AUD)
Program Officer
Donahue, Amy
Project Start
2010-04-05
Project End
2017-03-31
Budget Start
2016-04-15
Budget End
2017-03-31
Support Year
6
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Pfingst, Bryan E; Colesa, Deborah J; Swiderski, Donald L et al. (2017) Neurotrophin Gene Therapy in Deafened Ears with Cochlear Implants: Long-term Effects on Nerve Survival and Functional Measures. J Assoc Res Otolaryngol 18:731-750
Pfingst, Bryan E; Bowling, Sara A; Colesa, Deborah J et al. (2011) Cochlear infrastructure for electrical hearing. Hear Res 281:65-73