Fanconi Anemia (FA) is an inherited DNA repair disorder characterized by congenital abnormalities, cancer predisposition, and progressive bone marrow failure. FA is caused by biallelic mutations in one of sixteen FANC genes, the products of which cooperate in the FA/BRCA DNA repair pathway. Although the precise biochemical functions of the FA/BRCA pathway remain unclear, the pathway promotes homologous recombination (HR) repair. Due to the underlying DNA repair defect, FA cells are hypersensitive to genotoxic DNA crosslinking agents. The mechanism of the bone marrow failure (BMF) in FA remains elusive. Our recent studies suggest that BMF results, at least in part, from increased p53 expression in hematopoietic stem and progenitor cells (HSCPs), leading to progressive cell cycle delay and apoptosis. BMF may also result from the accumulation of DNA damage from the endogenous crosslinking agent, acetaldehyde, and the selective toxicity of this agent to hematopoietic stem cells. Recently, we identified hyperactive TGF? signaling as a mechanism of bone marrow suppression in FA. Disruption of TGF? signaling, through the use of shRNAs, sgRNAs, and small molecule inhibitors confirmed the suppressive role of the pathway on FA cell growth. We hypothesize that an upstream inhibitor of the TGF? pathway (i.e., a monoclonal antibody to TGF? itself) will inhibit this pathway and rescue the function of the HSPCs and FA stromal fibroblasts, resulting in an increased probability of rescuing bone marrow function in FA patients.
The specific aims of this R01 are: 1) To determine whether hyperactivation of the TGF? pathway suppresses growth of primary FA cells and FA cell lines, 2) To determine the mechanism by which TGF? inhibitors promote FA cellular growth and enhanced resistance to crosslinkers, and 3) To determine the mechanism of TGF?-mediated suppression of bone marrow in vivo in mouse models.

Public Health Relevance

Our laboratory has recently determined that a hyperactive TGF? signaling pathway may account, at least in part, for the bone marrow disease and perhaps for the other developmental abnormalities, such as skeletal and limb abnormalities, in Fanconi anemia (FA). Our project will further examine the role of TGF? in the disease progression of FA, with the ultimate goal of developing novel approaches to treating bone marrow failure in FA patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
High Priority, Short Term Project Award (R56)
Project #
2R56DK043889-23
Application #
9114294
Study Section
Molecular and Cellular Hematology (MCH)
Program Officer
Roy, Cindy
Project Start
1992-03-01
Project End
2016-08-31
Budget Start
2015-09-08
Budget End
2016-08-31
Support Year
23
Fiscal Year
2015
Total Cost
$126,865
Indirect Cost
$46,865
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Rondinelli, Beatrice; Gogola, Ewa; YĆ¼cel, Hatice et al. (2017) EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nat Cell Biol 19:1371-1378
Karras, Georgios I; Yi, Song; Sahni, Nidhi et al. (2017) HSP90 Shapes the Consequences of Human Genetic Variation. Cell 168:856-866.e12
Howitt, Brooke E; Strickland, Kyle C; Sholl, Lynette M et al. (2017) Clear cell ovarian cancers with microsatellite instability: A unique subset of ovarian cancers with increased tumor-infiltrating lymphocytes and PD-1/PD-L1 expression. Oncoimmunology 6:e1277308
Mouw, Kent W; Goldberg, Michael S; Konstantinopoulos, Panagiotis A et al. (2017) DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discov 7:675-693
Li, Heng; Lim, Kah Suan; Kim, Hyungjin et al. (2016) Allosteric Activation of Ubiquitin-Specific Proteases by ?-Propeller Proteins UAF1 and WDR20. Mol Cell 63:249-260
Zhang, Haojian; Kozono, David E; O'Connor, Kevin W et al. (2016) TGF-? Inhibition Rescues Hematopoietic Stem Cell Defects and Bone Marrow Failure in Fanconi Anemia. Cell Stem Cell 18:668-81
Kais, Zeina; Rondinelli, Beatrice; Holmes, Amie et al. (2016) FANCD2 Maintains Fork Stability in BRCA1/2-Deficient Tumors and Promotes Alternative End-Joining DNA Repair. Cell Rep 15:2488-99
Bluteau, Dominique; Masliah-Planchon, Julien; Clairmont, Connor et al. (2016) Biallelic inactivation of REV7 is associated with Fanconi anemia. J Clin Invest 126:3580-4