No cures exist for patients with glioblastoma (GBM) due to the resistance of tumor cells to standard therapies. Stem-like tumor subpopulations seem especially refractory to most treatments, and it is becoming increasingly clear that specific tumormicroenvironments can promote stem cell properties and chemoresistance. However, poor understanding of how emerging targeted therapies interact with other agents and the tumor microenvironment has limited their development. The long-term goal of the project is to develop Notch inhibitors as effective new therapies for glioblastoma and other malignant brain tumors. The objective of this proposal is to elucidate how Notch interacts with the tumor microenvironment and other treatments so pathway inhibitors can be effectively used in the clinic. The Notch pathway, which is required for generation and maintenance of non-neoplastic neural stem cells, also plays a key role in GBM cancer stem cells (CSC). It has been shown that the perivascular microenvironment promotes CSC through activation of Notch signaling, and a number of agent targeting blood vessels are currently in use. As tumor-associated blood vessels are removed, GBM and other tumors shift towards a hypoxic phenotype, and it is less clear how Notch will function in this microenvironment. The central hypothesis to be tested in this proposal is that Notch is a key mediator of GBM differentiation and therapeutic response not just in the perivascular niche, but also in the hypoxic microenvironment. Indeed, emerging data suggest that hypoxic tumor cells can recapitulate many of the molecular features which define the perivascular niche, and that Notch induces a stem-like phenotype and modulates the response to traditional chemotherapy in this context. The first two specific aims focus on understanding how Notch is activated in hypoxic GBM cells, and determining if Notch blockade can reverse the increase in CSC and chemoresistance promoted by hypoxia. The second two specific aims focus on the interaction between Notch inhibition and temozolomide chemotherapy, and investigate a novel mechanism by which Notch blockade can sensitize GBM to this commonly used alkylating agent. These studies will determine how Notch activity is regulated in hypoxic glioma cells, and to establish a requirement for Notch in CSC induction and aggressive tumor behavior in the hypoxic microenvironment. They will also examine a novel epigenetic mechanism by which the pathway can modulate MGMT expression and temozolomide sensitivity. These results are all of high clinical relevance, and will have a direct impact on the development of a novel agent targeting CSC in glioblastoma.

Public Health Relevance

Glioblastoma are the most common malignant brain tumors in adults, and are almost always fatal. We will develop Notch inhibitors as new therapies for glioblastoma and other malignant brain tumors, focusing on how these drugs work in the hypoxic tumor microenvironment.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
High Priority, Short Term Project Award (R56)
Project #
Application #
Study Section
Clinical Neuroimmunology and Brain Tumors Study Section (CNBT)
Program Officer
Fountain, Jane W
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Schools of Medicine
United States
Zip Code
Chu, Qian; Orr, Brent A; Semenkow, Samantha et al. (2013) Prolonged inhibition of glioblastoma xenograft initiation and clonogenic growth following in vivo Notch blockade. Clin Cancer Res 19:3224-33
Fan, Xing; Khaki, Leila; Zhu, Thant S et al. (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28:5-16
Schreck, Karisa C; Taylor, Pete; Marchionni, Luigi et al. (2010) The Notch target Hes1 directly modulates Gli1 expression and Hedgehog signaling: a potential mechanism of therapeutic resistance. Clin Cancer Res 16:6060-70
Bar, Eli E; Lin, Alex; Mahairaki, Vasiliki et al. (2010) Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol 177:1491-502
Sun, Peng; Xia, Shuli; Lal, Bachchu et al. (2009) DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation. Stem Cells 27:1473-86