This application addresses broad Challenge Area (06) Enabling Technologies and specific Challenge Topic, 06-ES-102* 3-D or virtual models to reduce use of animals in research: Creation of miniature multi-cellular organs for high throughput screening for chemical toxicity testing. Human tissue is three-dimensional, and requires convective transport of nutrients and waste through capillary networks to meet metabolic demands. Chemical toxins are primarily absorbed through the microcirculation of the skin, lungs, and gastrointestinal tract. However, there are no three-dimensional in vitro models of human tissue which contain perfused human capillaries. Our project will create a high throughput platform of 3-D human microtissues (~ 1 mm3) that receive nutrients and eliminate waste products by perfused human capillaries. The platform will be comprised of parallel endothelial cell-lined microfluidic channels, mimicking an arteriole and venule, separated by a third central parallel channel that contains stromal cells embedded in fibrin. The channels are filled with flowing media enriched with oxygen and other nutrients, and are porous at fixed intervals which define the length of the microtissue. The pores allow the endothelial cells to respond to angiogenic signals from the stromal cells by sprouting and forming a capillary network to meet the metabolic needs. Our strategy employs microfabrication technology to create the fluidic channels and pores, but is biology-inspired by mimicking the steps of in-vivo angiogenesis. The resulting platform will contain >1,000 microtissues on a single device no larger than 500 cm2, and is ideally suited for high throughput chemical toxicity screening in which >50 different chemicals or chemical concentrations can be studied simultaneously. We propose two specific aims: 1) fabricate the microfluidic device with the capacity to create 3-D microtissues perfused with human capillaries in a high throughput fashion;and 2) create the 3-D microtissues perfused with human capillaries, and characterize the capillary network permeability. The innovation of the proposal lies in the design strategy which combines microfabrication, microfluidics, optical imaging, and endothelial/stromal cell biology to achieve, for the first time, an in-vitro perfused human capillary bed. Completion of the project will provide a highthroughput controlled platform to study the human microcirculation with direct application to high throughput chemical toxicity testing, but also a broad range of additional fields including drug discovery, normal and ischemic wound healing, adaptation to exercise, embryogenesis, oncogenesis, cell migration, and tissue engineering.

Public Health Relevance

Three-dimensional in vitro human tissue models can provide unique information regarding cell and extracellular function. This proposal seeks to develop an in vitro three-dimensional system of perfused human capillary networks. The platform employs microfabrication techniques, is high-throughput, provides for real- time non-invasive imaging, and will have broad applications in chemical toxicity screening, with an emphasis on the microcirculation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
NIH Challenge Grants and Partnerships Program (RC1)
Project #
5RC1ES018361-02
Application #
7937936
Study Section
Special Emphasis Panel (ZRG1-BST-M (58))
Program Officer
Balshaw, David M
Project Start
2009-09-24
Project End
2011-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
2
Fiscal Year
2010
Total Cost
$496,213
Indirect Cost
Name
University of California Irvine
Department
Biomedical Engineering
Type
Schools of Engineering
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Moya, Monica L; Alonzo, Luis F; George, Steven C (2014) Microfluidic device to culture 3D in vitro human capillary networks. Methods Mol Biol 1202:21-7
Hsu, Yu-Hsiang; Moya, Monica L; Hughes, Christopher C W et al. (2013) A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab Chip 13:2990-8
Ehsan, Seema M; George, Steven C (2013) Nonsteady state oxygen transport in engineered tissue: implications for design. Tissue Eng Part A 19:1433-42
Moya, Monica L; Hsu, Yu-Hsiang; Lee, Abraham P et al. (2013) In vitro perfused human capillary networks. Tissue Eng Part C Methods 19:730-7
Hsu, Yu-Hsiang; Moya, Monica L; Abiri, Parinaz et al. (2013) Full range physiological mass transport control in 3D tissue cultures. Lab Chip 13:81-9
Kim, Jai-Hyun; Peacock, Matthew R; George, Steven C et al. (2012) BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: implications for hereditary hemorrhagic telangiectasia type II. Angiogenesis 15:497-509
Tian, Lei; George, Steven C (2011) Biomaterials to prevascularize engineered tissues. J Cardiovasc Transl Res 4:685-98