Alzheimer's disease (AD) is one of the most persistent and devastating ailment of old age. Besides the deposition of ?-amyloid plaques and accumulation of neurofibrillary tangles, AD brains are marked by prominent neuroinflammatory responses, which plays a crucial role in disease pathogenesis. Although aging is known to profoundly influence tissue homeostasis, how age-induced brain inflammation specifically contributes to the progression of AD remains elusive. The cytokine family type I interferon (IFN) is a major innate immune mediator produced in response to microbial infections. We have detected elevated signals of IFN pathway activation in the brains of normal aging mice as well as APP transgenic and knock-in animals expressing human amyloid beta (A?). Previously by manipulating the generation of amyloid, we established that innate immune cells readily produce IFN upon exposure to certain form of amyloid via activating nucleic acid-sensing innate immune receptors in vitro and in vivo, suggesting that amyloid aggregation may serve as endogenous stimulus to chronically activate IFN pathway in AD. Consistent with these observations, a panel of IFN pathway genes were expressed at increased levels in an archived human AD dataset. At this time, the functional significance of IFN pathway activation in the context of AD-related neuroinflammation is unclear. Separately, aging-associated IFN activation predominantly affect choroid plexus (CP), a membrane structure that interfaces the cerebrospinal space and the blood brain capillaries. How this element of IFN signaling affects AD pathogenesis has not been modeled so far. Based on these intriguing observations, we hypothesize that IFN pathway critically participates in normal brain aging and, further under protein homeostatic stress, promotes AD pathogenesis. This application seeks the answers to the urgent scientific question how a novel arm of neuroinflammation contribute to AD from both brain parenchyma and neurovascular barrier. We propose three specific aims - 1: Map age-dependent activation of IFN pathway in normal aging and in response to A? pathology; 2: Define the functional significance of IFN pathway activation in A? pathology; and 3: Identify IFN-regulated molecular signatures central to AD pathogenesis in both mouse AD models and human patients. These studies are expected to generate unprecedented insights on how IFN pathway affects the pathogenesis of AD and reveal potential crosstalk between all major neuroinflammatory pathways, which may facilitate the identification of novel biomarkers and therapeutic targets.

Public Health Relevance

Most patients develop Alzheimer's disease (AD) when they get old, but how age-induced changes in the brain triggers AD is not clear. We have discovered that a novel inflammation pathway known to operate in other parts of the body is unexpectedly turned on in AD brain. Here, we plan to study in details how such inflammation contributes to AD with a hope to find molecules as targets for AD treatment.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Multi-Year Funded Research Project Grant (RF1)
Project #
1RF1AG057587-01A1
Application #
9543610
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Opanashuk, Lisa A
Project Start
2018-06-01
Project End
2023-05-31
Budget Start
2018-06-01
Budget End
2023-05-31
Support Year
1
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Baylor College of Medicine
Department
Type
Overall Medical
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Litvinchuk, Alexandra; Wan, Ying-Wooi; Swartzlander, Dan B et al. (2018) Complement C3aR Inactivation Attenuates Tau Pathology and Reverses an Immune Network Deregulated in Tauopathy Models and Alzheimer's Disease. Neuron 100:1337-1353.e5
Cao, Wei; Zheng, Hui (2018) Peripheral immune system in aging and Alzheimer's disease. Mol Neurodegener 13:51