The increasing incidence of obesity is a major health issue facing the USA. Fortunately, in the past decade several key hormones and CMS pathways controlling body weight and glucose homeostasis have been identified. Indeed, we now have a rough CMS roadmap through which key metabolic signals such as leptin exert its effects. If effective strategies to combat the incidence of obesity and eating disorders are to be developed, an increased understanding of the molecular mechanisms underlying coordinate energy homeostasis is required. Recently, we have assembled a team of investigators whose goal is to delineate the neural substrates underlying coordinated control of food intake, body weight and glucose homeostasis. In the current application, we provide a series of studies designed to increase our understanding of the hypothalamic control of liver metabolism. We will also investigate mechanisms by which the hypothalamus regulates complex feeding behavior, especially the rewarding nature of high fat diets. First, we will investigate mechanisms by which leptin and serotonin acting on hypothalamic POMC neurons regulate hepatic glucose and lipid metabolism. Second, we will investigate the interaction of hypothalamic pathways controlling body weight with the brain pathways regulating complex appetitive behavior and reward. We hypothesize that these reciprocal connections are crucial for regulating responses to natural rewards including high fat diet. Finally, in parallel to our mouse studies in Aims 1-2, we will, in postmortem human brain tissue, quantitatively assess alterations in genes whose expression we hypothesize is altered in obese humans and those with drug-induced metabolic syndrome. The timely translation of hypotheses based on animal models to the human is one of the primary goals of the Taskforce on Obesity at UT Southwestern Medical Center at Dallas, and we are uniquely poised to make major strides in translational research of obesity.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Linked Research project Grant (RL1)
Project #
5RL1DK081185-04
Application #
7883231
Study Section
Special Emphasis Panel (ZRR1-SRC (99))
Program Officer
Laughlin, Maren R
Project Start
2007-09-30
Project End
2012-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
4
Fiscal Year
2010
Total Cost
$762,384
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Udit, Swalpa; Burton, Michael; Rutkowski, Joseph M et al. (2017) Nav1.8 neurons are involved in limiting acute phase responses to dietary fat. Mol Metab 6:1081-1091
Mansuy-Aubert, Virginie; Gautron, Laurent; Lee, Syann et al. (2015) Loss of the liver X receptor LXR?/? in peripheral sensory neurons modifies energy expenditure. Elife 4:
Gautron, Laurent; Elmquist, Joel K; Williams, Kevin W (2015) Neural control of energy balance: translating circuits to therapies. Cell 161:133-145
Shah, Bhavik P; Vong, Linh; Olson, David P et al. (2014) MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus. Proc Natl Acad Sci U S A 111:13193-8
Heymsfield, Steven B; Avena, Nicole M; Baier, Leslie et al. (2014) Hyperphagia: current concepts and future directions proceedings of the 2nd international conference on hyperphagia. Obesity (Silver Spring) 22 Suppl 1:S1-S17
Williams, Kevin W; Liu, Tiemin; Kong, Xingxing et al. (2014) Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis. Cell Metab 20:471-82
Kohno, Daisuke; Lee, Syann; Harper, Matthew J et al. (2014) Dnmt3a in Sim1 neurons is necessary for normal energy homeostasis. J Neurosci 34:15288-96
Tolson, Kristen P; Gemelli, Terry; Meyer, Donna et al. (2014) Inducible neuronal inactivation of Sim1 in adult mice causes hyperphagic obesity. Endocrinology 155:2436-44
Sohn, Jong-Woo; Elmquist, Joel K; Williams, Kevin W (2013) Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci 36:504-12
Gautron, L; Cravo, R M; Elmquist, J K et al. (2013) Discrete melanocortin-sensitive neuroanatomical pathway linking the ventral premmamillary nucleus to the paraventricular hypothalamus. Neuroscience 240:70-82

Showing the most recent 10 out of 78 publications