This application targets the acquisition of a new console for our 600 MHz NMR spectrometer, a cryogenically-cooled probe, three high-power lasers (25 W frequency-tunable Argon ion, excimer, and Ti-Sapphire) for photo-CIDNP-mediated ultrasensitive NMR and laser-initiated chemistry, and flow and sample-changer automation. The above instrumentation will provide unique capabilities to the UW- Madison and entire US research community. The requested equipment will be located in the Paul Bender Chemistry Instrument Center (PBCIC) within the Department of Chemistry at the University of Wisconsin-Madison. All instrumentation will be housed in a dedicated room that has excellent temperature and humidity control already in place, and will be overseen by experienced personnel with a proven track record for spectrometer method development, supervision, safe operation and technical support. The laser-enhanced spectrometer will be available for use to both on- and off-campus researchers. The requested instrumentation will provide crucial support for a variety of hypothesis-driven health-related research and method development that should benefit the NMR community at large. Major research projects that will be enabled by the requested equipment include: (1) photochemically-induced dynamic nuclear polarization (photo-CIDNP) method development and applications;(2) structural studies on molecular chaperone-substrate complexes;(3) NMR analysis of photo-initiated chemical reactions;(4) NMR-detected high-throughput screening of novel compounds for biomedically valuable activities;(5) structural characterization and screening of protein-like foldamers;(6) exploration of the molecular basis of carbohydrate-mediated intercellular recognition;and (7) development of ligands that intercept inter-bacterial communication (quorum sensing) and elucidate host-microbe signaling. The high-power lasers and flow accessories will provide unprecedented capabilities and flexibility for cutting-edge high-sensitivity laser-enhanced NMR. Progress on fundamental scientific challenges such as signal-to-noise enhancement in NMR spectroscopy, elucidation of reaction mechanisms, and characterization of RNA and protein folding processes in real time will be enabled. The synergism between photo-CIDNP-enhanced NMR and the cryogenic probe will enable collecting crucial biological data on samples that require rapid, ultrasensitive data collection (e.g., aggregation-/degradation-prone systems), and pave the way to augment the intrinsically poor sensitivity of NMR spectroscopy. Finally, the automated sample-changing capabilities will enable high-throughput screening within the PBCIC, with significant advancements for health-related research.

National Institute of Health (NIH)
Office of The Director, National Institutes of Health (OD)
Biomedical Research Support Shared Instrumentation Grants (S10)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-R (30))
Program Officer
Levy, Abraham
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Wisconsin Madison
Schools of Arts and Sciences
United States
Zip Code
Amador, Adrian G; Sherbrook, Evan M; Lu, Zhan et al. (2018) A general protocol for radical anion [3 + 2] cycloaddition enabled by tandem Lewis acid photoredox catalysis. Synthesis (Stuttg) 50:539-547
Okuno, Yusuke; Cavagnero, Silvia (2018) Effect of heavy atoms on photochemically induced dynamic nuclear polarization in liquids. J Magn Reson 286:172-187
Skubi, Kazimer L; Kidd, Jesse B; Jung, Hoimin et al. (2017) Enantioselective Excited-State Photoreactions Controlled by a Chiral Hydrogen-Bonding Iridium Sensitizer. J Am Chem Soc 139:17186-17192
Thomas, Nicole C; Bartlett, Gail J; Woolfson, Derek N et al. (2017) Toward a Soluble Model System for the Amyloid State. J Am Chem Soc 139:16434-16437
Vasquez, Joseph K; Tal-Gan, Yftah; Cornilescu, Gabriel et al. (2017) Simplified AIP-II Peptidomimetics Are Potent Inhibitors of Staphylococcus aureus AgrC Quorum Sensing Receptors. Chembiochem 18:413-423
Ju, Minsoo; Weatherly, Cale D; Guzei, Ilia A et al. (2017) Chemo- and Enantioselective Intramolecular Silver-Catalyzed Aziridinations. Angew Chem Int Ed Engl 56:9944-9948
Miller, Zachary D; Lee, Byung Joo; Yoon, Tehshik P (2017) Enantioselective Crossed Photocycloadditions of Styrenic Olefins by Lewis Acid Catalyzed Triplet Sensitization. Angew Chem Int Ed Engl 56:11891-11895
Liu, Lu; Gerstner, Nels C; Oxtoby, Lucas J et al. (2017) Fluorinated Amine Stereotriads via Allene Amination. Org Lett 19:3239-3242
Huang, Minxue; Yang, Tzuhsiung; Paretsky, Jonathan D et al. (2017) Inverting Steric Effects: Using ""Attractive"" Noncovalent Interactions To Direct Silver-Catalyzed Nitrene Transfer. J Am Chem Soc 139:17376-17386
Burke, Eileen G; Gold, Brian; Hoang, Trish T et al. (2017) Fine-Tuning Strain and Electronic Activation of Strain-Promoted 1,3-Dipolar Cycloadditions with Endocyclic Sulfamates in SNO-OCTs. J Am Chem Soc 139:8029-8037

Showing the most recent 10 out of 15 publications