Mass spectrometry is a powerful tool for the identification of proteins and the determination of their structures and properties. The scientific community routinely employs MS-based proteomics. A new opportunity, protein footprinting, is emerging that takes advantage of these refined proteomics capabilities that combine high performance liquid chromatography and mass spectrometry. The development of these techniques is driven by a growing number of collaborative projects in biomedical science and other fields. The Washington University Mass Spectrometry Resource (WUMSR) has played a key role in the development of protein footprinting for more than a decade and is an ideal place to support its expansion. While it does not yet have the resolution of X-ray crystallography and NMR, MS-based footprinting is significantly more specific than the low resolution tools of CD, fluorescence, Raman, absorbance, SPR, and calorimetry. In addition footprinting occurs while the proteins and their complexes are in their native states, affording relevant measurements of many important thermodynamic and kinetic parameters. Footprinting approaches include hydrogen deuterium exchange (H/DX), fast photochemical oxidation of proteins (FPOP), and other amino acid specific chemical modifications. To fulfill and disseminate the promise of protein footprinting, we propose to add a high performance, LC/MS system and commit it full time to support this research. The proposed instrument will be used to address the needs of 17 collaborators who have problems in protein biochemistry and medicine. The proteins have implications in cancer, viral infections, pain management, and brain disorders, principally Alzheimer's disease (AD). There are implications as well as in energy and photosynthesis. The approaches will enable studies of protein folding and unfolding, permit the determination of interfaces between important peptides (e.g., A? with implications in AD), determine binding interfaces of small ligands including potential drugs, and measure the affinities of binding. We will extend these measurements to protein assemblies, including those that are membrane-bound. Given that the footprinting experiments produce data that """"""""constrains"""""""" protein and protein-complex structure, just as in NMR, we predict that we can ultimately use these data to obtain """"""""coarse-grained"""""""" structures, even in the absence of high resolution structural data. Progress in this area will impact a broad range of protein science with consequent effects on improving human health.

Public Health Relevance

The proposed instrument will accelerate protein structure research and lead to new understanding of protein interactions that play key roles in health and disease. The research of collaborators covers a broad range of health topics related including viruses, cancer, and Alzheimer's disease.

National Institute of Health (NIH)
Office of The Director, National Institutes of Health (OD)
Biomedical Research Support Shared Instrumentation Grants (S10)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Birken, Steven
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Schools of Arts and Sciences
Saint Louis
United States
Zip Code
Wang, Hanliu; Shu, Qin; Rempel, Don L et al. (2017) Understanding Curli Amyloid-Protein Aggregation by Hydrogen-Deuterium Exchange and Mass Spectrometry. Int J Mass Spectrom 420:16-23
Nguyen, Amelia Y; Bricker, William P; Zhang, Hao et al. (2017) The proteolysis adaptor, NblA, binds to the N-terminus of ?-phycocyanin: Implications for the mechanism of phycobilisome degradation. Photosynth Res 132:95-106
Cheng, Ming; Zhang, Bojie; Cui, Weidong et al. (2017) Laser-Initiated Radical Trifluoromethylation of Peptides and Proteins: Application to Mass-Spectrometry-Based Protein Footprinting. Angew Chem Int Ed Engl 56:14007-14010
Frieden, Carl; Wang, Hanliu; Ho, Chris M W (2017) A mechanism for lipid binding to apoE and the role of intrinsically disordered regions coupled to domain-domain interactions. Proc Natl Acad Sci U S A 114:6292-6297
Wang, Hanliu; Shu, Qin; Frieden, Carl et al. (2017) Deamidation Slows Curli Amyloid-Protein Aggregation. Biochemistry 56:2865-2872
Niu, Ben; Mackness, Brian C; Rempel, Don L et al. (2017) Incorporation of a Reporter Peptide in FPOP Compensates for Adventitious Scavengers and Permits Time-Dependent Measurements. J Am Soc Mass Spectrom 28:389-392
Zhang, Hao; Liu, Haijun; Blankenship, Robert E et al. (2016) Isotope-Encoded Carboxyl Group Footprinting for Mass Spectrometry-Based Protein Conformational Studies. J Am Soc Mass Spectrom 27:178-81
Zhang, Hao; Liu, Haijun; Lu, Yue et al. (2016) Native mass spectrometry and ion mobility characterize the orange carotenoid protein functional domains. Biochim Biophys Acta 1857:734-9
Niu, Ben; Zhang, Hao; Giblin, Daryl et al. (2015) Dosimetry determines the initial OH radical concentration in fast photochemical oxidation of proteins (FPOP). J Am Soc Mass Spectrom 26:843-6