In this application we are requesting funds for the purchase of a ThermoScientific a next-generation Q-LTQ Orbitrap. We are requesting this instrument because its capabilities are well suited for bottom-up, middle-down and top-down protein characterization, high-sensitivity quantitative proteomics of limited samples and post- translational modification analysis. The requested next-generation hybrid Orbitrap has several key improvements over the current LTQ Orbitrap Elite that allow it to achieve better performance: 1) Mass selecting quadrupole available to select ions for Orbitrap or ion trap analysis, 2) Parallel operation of both ion trap and Orbitrap mass analyzers allowing for significantly increased scan rate, 3) HCD cell for ion accumulation in single ion or multiplexed modes, 4) Full flexibility of CID, HCD and ETD dissociations at any stage of MSn analysis, 5) Ultrahigh field Orbitrap with advanced transient processing, 6) Novel, high performance front-end ETD source and dedicated internal mass calibration. These improvements along with reduced overhead result in a high-resolution data acquisition rate greater than other designs without sacrificing sensitivity or dynamic range. The faster combined MS1 and MS2 scan rates of the requested next-gen Orbitrap are essential for LC- MS/MS with high efficiency ultra-high pressure LC separations, resulting in reduced proteomic experiment time without loss of data quality. This requested next-generation Q-LTQ Orbitrap will be critical to support the needs of several Major Users that performing large-scale proteomics on human tissue where samples are limited and sensitivity and throughput are key requirements.

Public Health Relevance

The Ohio State University is requesting funds for the purchase of a high-sensitivity, high-resolution nextgeneration Q-LTQ Orbitrap mass spectrometer. This instrument will be used for bottom-up, middle-down and top-down protein characterization, spectral count relative quantitation of LC-MS/MS of human tissue biopsies and labile post-translational modification analysis.

Agency
National Institute of Health (NIH)
Type
Biomedical Research Support Shared Instrumentation Grants (S10)
Project #
1S10OD018056-01
Application #
8640367
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Birken, Steven
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Ohio State University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
City
Columbus
State
OH
Country
United States
Zip Code
43210